

i

Color Transformation Language
User Guide and Reference Manual

Florian Kainz and Andrew Kunz

updated 24/07/2007

iii

Contents

1 Introduction..1
1.1 Motivation...1
1.2 What CTL Is ..1
1.3 What CTL Is Not ...1
1.4 This Document...2

2 Overview of CTL ..3
2.1 Basic Concepts..3
2.2 Input and Output, Varying and Uniform ..4
2.3 Data Types..4
2.4 Arrays, Static Data, Lookup Tables ...6
2.5 Scattered Data Interpolation...7
2.6 Standard Library ..8
2.7 Modules ..8

3 Description of the CTL interpreter ...10
3.1 Theory of Operation ..10
3.2 C++ API ...10
3.3 FunctionCall and FunctionArg Objects...13
3.4 DataType Objects ..14
3.5 ArrayType and StructType Objects ...15
3.6 Error Handling..16
3.7 Breaking Infinite Loops...16
3.8 Thread-Safety and Parallelism ...17
3.9 Accelerating the Transforms..17

4 Design Decisions...18
4.1 Limited Set of Language Features...18
4.2 No Support for Execute-Only Color Transforms..18
4.3 Portability ...18
4.4 SIMD Back End ..18
4.5 Security...19

5 CTL Language Reference ...20
5.1 Syntactic Notation ...20
5.2 Lexical Elements..20
5.2.1 Keywords..20
5.2.2 Punctuators..21
5.2.2.1 Comments...21
5.2.3 Literals ..21
5.2.3.1 Integer Literals ...21
5.2.3.2 Floating Literals ...22
5.2.3.3 Half Literals...22
5.2.3.4 String Literals ...22
5.2.3.5 Boolean Literals ...22
5.3 Basic Concepts..22
5.3.1 Varying Values ...22
5.3.2 What is A CTL Program...22
5.3.3 Modules ..22
5.3.4 CTL Version..23
5.3.5 Name Spaces ...23
5.3.6 Definitions ..24
5.3.7 Scope ..25

iv

5.3.8 Initialization of Constants, Evaluation of Constant Expressions ...25
5.3.9 Types...25
5.3.9.1 Fundamental Types ...25
5.3.9.2 Compound Types...26
5.3.9.2.1 Struct Types..26
5.3.9.2.2 Array Types...26
5.3.10 Const Qualifier ...26
5.3.11 Type Conversion..26
5.4 Definitions ..27
5.4.1 Struct Type Definitions ...27
5.4.2 Variable Definitions ...27
5.4.3 Function Definitions ..28
5.4.3.1 Function Parameters ...29
5.4.3.2 Variable-Size Arrays ..30
5.5 Statements..31
5.5.1 Compound Statements ...31
5.5.2 While Statements...31
5.5.3 For Statements...32
5.5.4 If Statements ..32
5.5.5 Assignments ..32
5.5.6 Expression Statements ...33
5.5.7 Null Statements..33
5.5.8 Print Statements ..33
5.5.9 Return Statements ...34
5.6 Expressions..34
5.6.1 Primary Expressions ...34
5.6.2 Arithmetic Expressions...35
5.7 Standard Library ..37
5.7.1 Numeric Constants..37
5.7.2 Floating-Point Number Classification ...37
5.7.3 Elementary Functions ...38
5.7.4 Operations on 3D Vectors, 3x3 Matrices and 4×4 Matrices...39
5.7.5 Lookup Tables and Scattered Data Interpolation...41
5.7.6 Conversions between Standard Color Spaces...45
5.7.7 Assertion ..46
5.8 Complete Grammar..47

Appendix A Simplified API for OpenEXR ..52
A.1 C++ Interface ..52
A.2 Matching CTL Parameters, Image Channels and Header Attributes..52
A.3 Translation between CTL Types, Channel Types and Attribute Types..54

Appendix B Source Code..56

Appendix C Sample Code and Utilities..57

1

1 Introduction

1.1 Motivation

Digital color management requires translating digital images among different representations or color spaces. For example, the

pixels in an image may encode the colors that should be seen when the image is displayed on a video monitor. Printing this
image on paper or recording it on motion picture film requires transforming the pixels to an appropriate representation: Video,

inks on paper and film all have different color gamuts and dynamic ranges. Color mixing is additive for video, but subtractive for
inks and film. Video and film typically use three color channels, while four or more inks are used for printing on paper. A color

management system must transform each pixel in the original image to corresponding amounts of ink or film density values.

The details of how each pixel is transformed can be fairly complex, and they are often subject to artistic decisions. When

images are exchanged between different people or companies, it is often desirable to exchange exact descriptions of
appropriate color transforms along with the digital image files. Two companies whose offices are in different geographical

locations may each have a copy of the same digital image file. When one of the companies prints the image on paper, they
want to be sure that they get the same result as the other company. In order to achieve identical results, the companies must

agree on details of the printing process (for example, inks and paper), and they must agree on the transform that converts pixels
in the file into amounts of ink on paper. Of course, this requires a description of the transform.

1.2 What CTL Is

The Color Transformation Language, or CTL, is a small programming language that has been designed to serve as a building
block for digital color management systems. CTL allows users to describe color transforms in a concise and unambiguous way
by expressing them as programs. Any digital color management system that supports CTL includes a CTL "interpreter", a
software program that performs CTL-described operations on pixels that make up an image. In order to apply a given transform

to an image, the color management system instructs the interpreter to load and run the CTL program that describes the
transform. The original and the transformed image constitute the CTL program's input and output.

Color transforms can be shared by distributing CTL programs. Two parties with the same CTL program can apply the same
transform to an image.

In addition to the original image, a CTL program can have input parameters whose settings affect how the input image will be
transformed. For example, a transform may have an "exposure" parameter, such that changing the exposure makes the image
brighter or darker. In order to guarantee identical results, parties that have agreed to use a particular transform must also agree
on the settings for the transform's parameters.

General-purpose programming languages such as C, C++ or Python could of course be used to describe color transforms, but
code written in those languages is not a suitable format for transform interchange. Some languages require the recipient to
explicitly compile and link a program’s source code before the program can be executed. Code must be carefully written in
order to make it portable across different operating systems. If code is executed inside a larger application, bugs can cause the

application to malfunction. In addition, with most general-purpose programming languages, reliable protection from viruses and
Trojan horses is very difficult to achieve.

A domain-specific programming language such as CTL can be designed to allow only the kinds of operations that are needed to
describe color transforms. This improves the portability of programs, protects users against application software crashes and

malicious code, and permits efficient interpreter implementations.

1.3 What CTL Is Not

A CTL interpreter is not a color management system; it is merely a software component that can be used as a part of such a
system. The interpreter transforms images by executing CTL programs, but only when invoked by the rest of the system. The

interpreter does not decide which programs to run and when, or what the settings for a transform's parameters should be.

CTL is a mechanism that can be used to implement any number of color management policies, but it does not by itself define a
particular policy.

Also, CTL is not a general-purpose image processing language. CTL programs are restricted to performing color space

transforms or other single-pixel operations. It is not possible to express operations such as convolving an image with a filter
kernel, or computing the sum of all pixels in an image.

2

1.4 This Document

This document describes the CTL language and the reference implementation of the CTL interpreter. Section 2 provides an

overview of the language. It should give the reader enough background to start writing CTL programs and understand their use.
Section 3 describes the reference implementation of the interpreter for the language for readers who are integrating the

reference CTL interpreter into their C++ applications. Section 4 provides more information on the implementation and Section 5
provides a programming reference guide for CTL.

This document assumes that the reader is familiar with the C and C++ programming languages and with basic digital imaging
concepts.

The reference implementation is designed so that it is easy to interpret CTL properly using the provided parser and framework in
combination with a custom program execution engine. Implementers who choose to re-implement the entire interpreter should

produce the same behavior and results as the reference interpreter. In the event that discrepancies are found between the
language reference in Section 6 and the reference implementation, the reference implementation should be considered the

specification.

3

2 Overview of CTL

In order to make CTL programs look familiar to people who are used to programming in C or C++, the syntax of CTL was
deliberately made similar to C. However, there are significant differences. Below, the main features of CTL are introduced by
showing a number of code samples.

2.1 Basic Concepts

The first example is a CTL transform that adjusts the overall brightness of an image according to an "exposure" parameter:

void
adjustExposure
 (output varying half rOut,
 output varying half gOut,
 output varying half bOut,
 input varying half r,
 input varying half g,
 input varying half b,
 input uniform float e = 0)
{
 float f = pow (2, e);
 rOut = r * f;
 gOut = g * f;
 bOut = b * f;
}

In CTL, a transform is expressed as a function that describes the operations that must be performed on an individual pixel. In
order to apply the transform to an image, the CTL interpreter calls the function once for each pixel.

The adjustExposure() function expects as inputs an image with three channels, r, g, and b, and an exposure value, e.

The function multiplies all pixels by 2
e
, thus making the image brighter or darker. (If the data in the pixels represent linear scene

luminance values, then this operation is equivalent to changing the aperture of the iris on the camera's lens by e f-stops.) The

result is a new image with three channels, rOut, gOut and bOut.

Most CTL functions have parameters. Input parameters supply input data, and results are returned via output parameters or via
the function's return value.

Function adjustExposure() has four input parameters, r, g, b and e. The parameters are marked with the keyword

input. The varying keyword indicates that the value of r, g and b varies from pixel to pixel. In other words, r, g and b

are image channels. The keyword uniform indicates that the fourth parameter, e, is the same for all pixels.

In addition to its input parameters, adjustExposure() has three output parameters, rOut, bOut and gOut, marked with

the keyword output. The varying keyword indicates that their values may vary from pixel to pixel; rOut, bOut and gOut

are the channels of the function's output image.

The return type of adjustExposure() is void. As in C, a void return type indicates that the function does not return a

value; all results are delivered via output parameters.

All function parameters and variables are typed. Here, parameter e as well as variable f in the function's body are of type

float; that is, the values of e and f are 32-bit floating-point numbers. The other six parameters are of type half; their

values are "half-precision" or 16-bit floating-point numbers.

In addition to floating-point numbers, CTL supports Boolean values, signed and unsigned integers, structures and arrays.
Those data types are described below.

Each input parameter may optionally have a default value. When a function is called and the caller does not specify a value for

a given parameter, then the called function uses the default value instead. The caller of adjustExposure() is allowed to

omit the value of e. In this case adjustExposure() assumes that e is zero. Parameters r, g and b have no default

values; the caller must explicitly specify their values.

The body of function adjustExposure(), between the curly braces, { and }, describes what the function does: first, built-

in function pow() is called to compute 2
e
, and the result is assigned to variable f. Then r, g, and b are multiplied by f, and

the result is assigned to rOut, gOut and bOut, respectively.

4

All CTL functions operate on one pixel at a time; there is no explicit loop over the pixels in an image. When the CTL interpreter

applies the transform that is described by function adjustExposure() to an image, it calls the function once for each pixel,

with the r, g and b parameters set equal to the pixel's r, g and b values.

The order in which the per-pixel calls to a CTL function are executed is not observable from the point of view of the function.

Calls may run one after another or multiple calls may run concurrently. Concurrent calls may really run simultaneously in
multiple threads, or they may be interleaved in a single thread.

Note that a CTL function sees only a single pixel at a time. The function cannot access neighboring pixels. It cannot determine
the size of the overall image or the location of the current pixel within the image. Limiting the view of the world to a single pixel

does not restrict the implementation of pure color space transforms, where what happens to a given pixel does not depend on
any other pixels. On the other hand, the single-pixel world view makes it impossible to express any operations that depend on

neighboring pixels or on the current pixel's location, for example convolving an image with a blur kernel or generating color
gradients.

Giving a CTL program access to only a single pixel at a time guarantees that each output pixel is strictly a function of the
corresponding input pixel and data passed from the application to the CTL program. Neither state accumulated during previous

program executions nor additional input pixels can influence the CTL program’s output. This allows CTL interpreters to optimize
execution in ways that would not be possible with a more general programming model.

2.2 Input and Output, Varying and Uniform

The input and uniform keywords in the declaration of function parameters are optional. If neither input nor output is

specified for a parameter, then the parameter is an input parameter. If neither varying nor uniform is specified, then the

parameter is assumed to be uniform. Function adjustExposure(), above, could have been declared like this:

void
adjustExposure
 (output varying half rOut,
 output varying half gOut,
 output varying half bOut,
 varying half r,
 varying half g,
 varying half b,
 float e = 0)
{
 ...
}

Why are the varying and uniform keywords necessary? Since each function operates on one pixel at a time, the body of a

function does not depend at all on whether the function's parameters vary between pixels or not. A function such as

float
square (float x)
{
 return x * x;
}

should work exactly the same way for uniform values as for varying ones.

varying and uniform are hints to the color management system that calls CTL functions. The varying keyword tells the

system that the corresponding function parameter is an image channel; the uniform keyword means that the parameter is

something else, for example an "attribute" or "tag" from an image file's header.

The CTL interpreter makes the uniform and varying hints available to the color management system, but it ignores those

hints otherwise. When the square() function, above, is called, it does not matter whether the value of x varies from pixel to

pixel. Only CTL functions that are meant to be called directly by the color management system must specify which parameters
are uniform and which are varying. Functions that will only be called by other CTL functions don't need to do this.

2.3 Data Types

CTL has the following six fundamental data types:

bool Boolean, can hold the value true or false

5

bool Boolean, can hold the value true or false

int signed 32-bit integer

unsigned int unsigned 32-bit integer

float single-precision (32-bit) floating-point

half half-precision (16-bit) floating-point

void indicates that a function does not return a value

CTL supports two kinds of aggregate data types: arrays and structures. The elements of arrays and the members of structures

can be fundamental or aggregate types. Structures and arrays can be nested to form arrays of structures, structures containing
arrays and other structures, or multidimensional arrays. For example:

bool x[3]; // an array of 3 Booleans

int y[3][4][2]; // an array of 3 arrays of 4 arrays of 2 integers,
 // in other words, a three-dimensional array

struct S // a simple structure
{
 int x;
 int y;
};

struct T // a nested structure, containing an integer
{ // and a two-dimensional array of S
 int i;
 S s[4][7];
};

Structures and arrays can be initialized by listing the values of their members or elements between curly braces:

float f[3] = {0.0, sqrt(2), 2 * sqrt(2)};
S s = {3, 4};
S t[2] = {{1, 2}, {3+4, 6/3}};

Except for function parameters, all array sizes are static. The CTL interpreter must be able to determine the size of an array at

"compile time", when it parses the CTL source code. CTL does not support arrays whose size is determined at run-time.

The following array declarations are valid:

void
f ()
{
 const int n = 2;
 const bool i[n*2] = {true, false, false, true};
 const int j[][] = {{1, 2}, {3, 4}, {5, 6}};
}

The CTL interpreter can determine the size of array i because it can determine that the value of n*2 is 4 without actually

calling function f(). Similarly, by counting the values between the curly braces, the interpreter can determine that j is an array

with 3 by 2 elements.

However, the following array declaration is not allowed:

void
g (int x)
{
 int k[x]; // error: cannot determine size of array k
}

In order to compute the size of array k, function g() would actually have to be called, and the size of k could be different for

each call.

6

2.4 Arrays, Static Data, Lookup Tables

Many color transforms rely on lookup tables. In CTL, lookup tables can be represented as multi-dimensional arrays, as shown

in the following example:

const float lut1D[] =
{
 0.03, 0.05, 0.10, 0.12, 0.15,
 0.20, 0.50, 1.00, 2.10, 3.30,
 4.45, 5.20, 5.40, 5.50, 5.50
};

const float lut1DMin = 0.0;
const float lut1DMax = 1.0;

const float lut3D[4][4][4][3] =
 {{{{.00, .00, .00}, {.11, .00, .00}, {.41, .00, .00}, {.91, .00, .00}},
 {{.00, .10, .00}, {.12, .20, .00}, {.42, .31, .00}, {.91, .49, .00}},
 ... // 45 lines omitted
 {{.00, .49, .53}, {.13, .60, .64}, {.43, .71, .75}, {.91, .93, .99}}}};

const float lut3DMin[3] = {0.00, 0.00, 0.00};
const float lut3DMax[3] = {5.50, 5.50, 5.50};

void
applyLuts
 (output varying half rOut,
 output varying half gOut,
 output varying half bOut,
 varying half r,
 varying half g,
 varying half b,
{
 half r2 = lookup1D (lut1D, lut1DMin, lut1Dmax, r);
 half g2 = lookup1D (lut1D, lut1DMin, lut1Dmax, g);
 half b2 = lookup1D (lut1D, lut1DMin, lut1Dmax, b);
 lookup3D_h (lut3D, lut3DMin, lut3Dmax, rOut, gOut, bOut, r1, g1, b1);
}

Function applyLuts() transforms three input values, r, g and b, into three output values, rOut, gOut and bOut, by

applying a one-dimensional (1D) and a three-dimensional (3D) lookup table.

The lookup tables, lut1D and lut3D, are represented as two arrays of float; lut1D is one-dimensional and lut3D is

four-dimensional (lut3D is a 3D table with entries that are 1D arrays). Both arrays are defined outside of function

applyLuts(). The arrays are "static"; they are created and initialized once, when the program is loaded, rather than

repeatedly, every time function applyLuts() is called.

In CTL, the keyword const must be used to mark all static data as constant. Constant static data are initialized when the

program module that defines them is loaded. Static data cannot be modified after initialization. Non-constant static data are not

allowed.

Prohibiting non-constant static data ensures that CTL functions cannot have side effects other than modification of the function's

output parameters. This way, independent CTL function calls cannot exchange data via static variables, and the function calls
can be executed sequentially, interleaved or concurrently, without affecting each call's results.

Function lookup1D() performs linearly interpolated 1D table lookups. lookup1D() is built into the CTL interpreter, but an

equivalent function could also be written in CTL:

float
myLookup1D (float lut[], float xMin, float xMax, float x)
{
 unsigned int iMax = lut.size - 1;

 if (x1 > xMin && x < xMax)
 {
 float u = (x - xMin) / (xMax - xMin) * iMax;
 unsigned int i = u;

7

 u = u - i;

 return lut[i] * (1 - u) + lut[i + 1] * u;
 }
 else if (x >= xMax)
 {
 return lut[iMax];
 }
 else // either x <= xMin or x is a NaN
 {
 return lut[0];
 }
}

The function's lookup table parameter, lut, is a “variable-size array”, that is, an array of unspecified size. The number of

elements in lut is not known until function myLookup1D() is called, and different callers may pass arrays of different sizes.

Within myLookup1D(), the size of lut can be queried using the size operator. The expression

lut.size

returns the number of elements in the array.

The 3D table lookup function is also built into the interpreter, but again, an equivalent function could be written in CTL. Here we

show only the function's name and parameter list, omitting the function's body:

void
myLookup3D
 (float lut[][][][3],
 float xMin[3],
 float xMax[3],
 float x[3],
 output float y[3])
{
 ...
}

Parameters x, xMin, xMax and y are fixed-size arrays, but the size of the lut parameter is only partially specified: lut is an

array of r by s by t by 3 elements, where r, s and t are not known until myLookup3D() is called. Again, the size of lut

can be queried using the size operator:

unsigned int r = lut.size;
unsigned int s = lut[0].size;
unsigned int t = lut[0][0].size;
unsigned int u = lut[0][0][0].size; // returns 3

The table can be indexed with three or four indices, yielding either a 1D array or an individual floating-point number. For
example:

float a[3] = lut[i][j][k];
float b = lut[i][j][k][h];

2.5 Scattered Data Interpolation

Using 3D lookup tables requires that the data in the table are known at 3D locations that form a regular grid. Tables are often

generated from measured data where the measured points may not form a regular grid. In this case we must use scattered
data interpolation to generate a regular grid from the measurements. We can do this by calling the built-in function

scatteredDataToGrid3D(). Written in CTL, the signature of this function looks like this:

void
scatteredDataToGrid3D
 (float scatteredData[][2][3],
 float gridMin[3],
 float gridMax[3],
 output float grid[][][][3])

8

Function parameter scatteredData is an array of pairs of 3D points. The first element in each pair represents a location in

3D space where a 3D value, represented by the second element in the pair, was measured. Function

scatteredDataToGrid3D() constructs a smooth function that interpolates the measured data, and then samples this

function at regular intervals to form a 3D grid, grid. gridMin and gridMax indicate the grid's bounding box. To generate

a static 3D grid from a scattered data set, we can call scatteredDataToGrid3D() like this:

const float data[][2][3] =
{
 {{0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}},
 {{0.0, 0.2, 0.0}, {0.1, 0.3, 0.1}},
 ...
 {{2.0, 2.0, 2.0}, {2.1, 2.1, 2.2}}
};

const float gridMin[3] = {0.0, 0.0, 0.0};
const float gridMax[3] = {2.0, 3.0, 4.0};

const float grid[16][16][16][3],
 scatteredDataToGrid3D (data, gridMin, gridMax, grid);

Note the syntax for the initialization of array grid. The comma after the declaration of grid indicates that the following

expression initializes the array. Within the initializing expression, the array is treated as variable, even though it has been

declared const. This allows us to pass the array to function scatteredDataToGrid3D() as an output parameter.

The unusual initialization syntax is required because CTL does not support variable-size arrays except in function parameters.

We could write a version of scatteredDataToGrid3D() that returns a grid with 16 by 16 by 16 points, but that function

could not be used to initialize, for example, a grid with 64 by 64 by 64 points. In order to allow a function to initialize a grid of
arbitrary size, the grid must be a variable-size array output parameter.

2.6 Standard Library

CTL comes with a standard library of built-in functions. Most of these functions could be written in CTL, but of course writing
color transforms is easier if commonly used functions already exist. The standard library includes:

• elementary functions, such as sqrt(), pow(), log(), sin(), etc., with the same names and functionality as in C,

• floating-point classification functions to determine if a value is finite, infinite or not a number,

• 1D table lookups with linear and cubic interpolation,

• 3D table lookups with linear interpolation,

• 3D scattered data interpolation,

• 3D vector, 3 by 3 and 4 by 4 matrix operations, such as addition, dot product, vector-times-matrix and matrix-times-matrix
multiplication, and

• conversions among a few standard color spaces: RGB with arbitrary primaries and white point, XYZ, L*u*v* and L*a*b*.

2.7 Modules

CTL programs may be split into multiple source files or "modules". This is useful for assembling libraries of commonly-used

functions and lookup tables. For example, a logLookup module might contain a function that performs table lookups in a

logarithmic space:

float
logLookup1D (float lut[], float xMin, float xMax, float x)
{
 return pow (10, lookup1D (lut, log10 (xMin), log10 (xMax), log10 (x)));
}

The CTL code for the module is stored in a file called logLookup.ctl, in a directory or folder where the CTL interpreter can

find it.

Another module, logLut, may define a lookup table. This module is stored in file logLut.ctl:

9

const float logLut[] =
{
 0.03, 0.05, 0.10, 0.12, 0.15,
 0.20, 0.50, 1.00, 2.10, 3.30,
 4.45, 5.20, 5.40, 5.50, 5.50
};

const float logLutMin = 0.0;
const float logLutMax = 3.0;

Other CTL modules that want to call function logLookup1D() or use the logLut table can now "import" the logLookup

and logLut modules. For example, module applyLogLut, stored in file applyLogLut.ctl, may contain the following:

import "logLookup";
import "logLut";

void
applyLogLut
 (output varying half r1,
 output varying half g1,
 output varying half b1,
 varying half r,
 varying half g,
 varying half b,
{
 r1 = logLookup1D (logLut, logLutMin, logLutmax, r);
 g1 = logLookup1D (logLut, logLutMin, logLutmax, g);
 b1 = logLookup1D (logLut, logLutMin, logLutmax, b);
}

When module applyLogLut is loaded, the import statements cause the CTL interpreter to also load modules

logLookup and logLut. Function applyLogLut() can now call function lookLookup1D() and access array

logLut as well as constants logLutMin and logLutMax.

10

3 Description of the CTL interpreter

The CTL interpreter is implemented as a set of C++ libraries that can be linked into a color management system or into any
other application program that needs to run CTL programs. The interpreter's C++ programming interface allows applications to
load CTL modules and to call the functions that are defined in those modules.

3.1 Theory of Operation

The CTL interpreter is split into a "front" and a "back" end. When a CTL module is loaded, the front end parses the module's
source text and generates an abstract syntax tree, reporting syntactic and semantic errors in the process. The front end also

maintains the interpreter's symbol table and performs constant expression evaluation and dead code elimination. For example,

const int n = 1;
foo (x + 4 / (n + 1));

becomes

foo (x + 2);

while the statement

if (1 > 2)
 bar();

is deleted entirely.

The interpreter's back end handles converting the abstract syntax tree into executable code and actually running the code. The
interpreter's front end is constructed in such a way that multiple different back end implementations can be supported.

The reference CTL interpreter implementation includes a single back end. This back end generates instructions for a single-
instruction-multiple-data (SIMD) virtual machine. This SIMD back end is portable, allowing CTL programs to be run on any
platform that supports C++. Other, higher-performance back ends can be implemented for specific applications or hardware
platforms. For example, the syntax tree produced by the front end could be compiled into native machine code. On platforms

with GPU (graphics processing unit) support, the back end could generate OpenGL shading language, HLSL or Cg code and
run it on the GPU.

The SIMD back end is fast enough for still images of moderate resolution, but working with high-resolution images or real-time
playback of moving images requires either a faster interpreter back end or other acceleration techniques (see section 3.9).

3.2 C++ API

This section gives a brief overview of the CTL interpreter's C++ application programming interface (API). Calling the API shown
here is somewhat cumbersome because of the complex mechanism for passing function call arguments and return values back

and forth between CTL and C++. In many cases, writing an abstraction layer on top of the interpreter's API, with a simplified,
application-specific argument passing mechanism, will be more convenient than calling the interpreter directly. One such

abstraction layer, which simplifies processing of images that are stored in OpenEXR format, is described in Appendix A.

In C++, the CTL interpreter front end is implemented in class Ctl::Interpreter. Class Interpreter is an abstract

base class. The back end adds a concrete class SimdInterpreter that is derived from class Interpreter. Once we

have an interpreter, we can load CTL modules, and we can call CTL functions.

The following example creates an interpreter with a SIMD back end, and loads a CTL module:

SimdInterpreter interp;
interp.loadModule ("adjustExposure");

Loading the module proceeds as follows:

The environment variable CTL_MODULE_PATH is interpreted as a colon-separated list of directory names. The interpreter

visits each of the directories listed in CTL_MODULE_PATH and looks for a file called adjustExposure.ctl. For instance,

if CTL_MODULE_PATH contains the string

ctl:/home/ctl:/usr/local/ctl

11

then the CTL interpreter checks if any of the following files exist:

ctl/adjustExposure.ctl
/home/ctl/adjustExposure.ctl
/usr/local/ctl/adjustExposure.ctl

The CTL interpreter opens the first adjustExposure.ctl file it finds. The Interpreter parses the contents of the file and

generates executable SIMD code. If file adjustExposure.ctl contains any import statements, then the modules

named in the import statements are loaded as well. If any file cannot be found or if errors are found during parsing, then

loadModule() throws an exception. Otherwise, loadModule() returns, and we are ready to call the functions defined in

module adjustExposure.

We assume that the module we have just loaded defines an adjustExposure() function. In order to call this function, we

must create a FunctionCall object:

FunctionCallPtr call = interp.newFunctionCall ("adjustExposure");

The FunctionCallPtr, above, is a reference-counting pointer to the FunctionCall object. If the pointer goes out of

scope and there are no other FunctionCallPtrs that point to the same FunctionCall object, then the

FunctionCall object is automatically deleted.

The FunctionCall object has methods to access the arguments and the return value of function adjustExposure().

The argument and the return value are represented as FunctionArg objects. Each FunctionArg object has a pointer to

a DataType object which describes the argument's type. The FunctionArg object also has a data buffer for the

argument's value.

Before calling a CTL function, the C++ application must set the function's input arguments. After the CTL function returns, the

application can examine the output arguments and the return value. We assume that CTL function adjustExposure() has

the following signature:

void
adjustExposure
 (output varying half rOut,
 output varying half gOut,
 output varying half bOut,
 varying half r,
 varying half g,
 varying half b,
 float e = 0)

In order to simplify the code below, we assume that the C++ application that calls adjustExposure() is written so that it

knows the parameter list in advance, instead of discovering the parameters at run time.

Given a pointer to a FunctionCall object that refers to the CTL function adjustExposure(), as well as a value for e,

and buffers for n pixels worth of image data (input channels r, g, and b; and output channels rOut, rOut and bOut), the

C++ function callCtlChunk() passes the input pixel data to the CTL interpreter, calls the CTL function, and retrieves the

output pixel data from the CTL interpreter:

void
callCtlChunk
 (FunctionCallPtr call,
 size_t n,
 half rOut[],
 half rOut[],
 half rOut[],
 const half r[],
 const half g[],
 const half b[],
 float e)
{
 // First set the input arguments for the function call:

 FunctionArgPtr rArg = call->findInputArg ("r");

 if (!rArg ||
 !rArg->type().cast<HalfType>() ||
 !rArg->isVarying())

12

 {
 // The CTL function has no argument "r", the argument
 // is not of type half, or the argument is not varying

 throw ArgExc ("Cannot set value of argument 'r'");
 }
 else
 {
 memcpy (rArg->data(), r, n * sizeof (half));
 }

 FunctionArgPtr gArg = call->findInputArg ("g");
 ...

 FunctionArgPtr bArg = call->findInputArg ("b");
 ...

 FunctionArgPtr eArg = call->findInputArg ("e");

 if (!eArg ||
 !eArg->type().cast<FloatType>() ||
 eArg->isVarying())
 {
 // The CTL function has no argument "e", the argument
 // is not of type float, or the argument is not uniform

 throw ArgExc ("Cannot set value of argument 'e'");
 }
 else
 {
 (float)eArg->data() = e;
 }

 // Now we can call the CTL function for
 // pixels 0, through n-1

 call->callFunction (n);

 // Retrieve the results

 FunctionArgPtr rOutArg = call->findOutputArg ("rOut");

 if (!rOutArg ||
 !rOutArg->type().cast<HalfType>() ||
 !rOutArg->isVarying())
 {
 // The CTL function has no argument "rOut", the argument
 // is not of type half, or the argument is not varying

 throw ArgExc ("Cannot set value of argument 'rOut'");
 }
 else
 {
 memcpy (rOut, rOutArg->data(), n * sizeof (half));
 }

 FunctionArgPtr gOutArg = call->findOutputArg ("gOut");
 ...

 FunctionArgPtr bOutArg = call->findOutputArg ("bOut");
 ...
}

13

The code above uses the functions FunctionCall::findInputArg() and FunctionCall::findOutputArg()

to lookup parameters by name: findInputArg() and findOutputArg() return either a pointer to the FunctionArg

that corresponds to the CTL function parameter with the specified name, or 0 if the CTL function has no such parameter.

As written above, callCtlChunk() can handle only a limited number of pixels at a time. This is because the maximum

value of n that can be passed to call->callFunction() is limited by the implementation of the CTL interpreter back end.

(For the reference SIMD back end, the limit is a few thousand pixels.) In order to handle images of arbitrary size, the pixel data
must be broken up into smaller chunks:

void
callCtl
 (Interpreter &interp,
 FunctionCallPtr call,
 size_t n,
 half rOut[],
 half rOut[],
 half rOut[],
 const half r[],
 const half g[],
 const half b[],
 float e)
{
 while (n > 0)
 {
 size_t m = min (n, interp.maxSamples());
 callCtlChunk (call, m, rOut, gOut, bOut, r, g, b, e);

 n -= m;
 rOut += m;
 gOut += m;
 bOut += m;
 r += m;
 g += m;
 b += m;
 }
}

3.3 FunctionCall and FunctionArg Objects

The code shown above already knows the signature of the CTL function it intends to call. Sometimes a C++ application

program must call a CTL function whose signature is not known in advance. In this case, the application must query the

corresponding FunctionCall object in order to discover the names and types of the function's parameters.

Class FunctionCall has the following member functions:

returnValue() Returns a FunctionArgPtr that points to the CTL function's return value.

numInputArgs()
numOutputArgs()

Returns the number of input or output arguments.

inputArg(i)
outputArg(i)

Returns a FunctionArgPtr that points to the input or output argument number i.

Input arguments are numbered from 0 to numInputArgs()-1; output arguments are

numbered from 0 to numOutputArgs()-1. The numbering of the arguments does

not necessarily correspond to the order of the function's parameters in the CTL source
code.

findInputArg(n)
findOutputArg(n)

These functions return a pointer to the input or output argument with name n, or a null

FunctionArgPtr if the function has no argument with name n.

Given a pointer to a FunctionArg, an application program can call its member functions to get more information:

name() Returns the FunctionArg's name. This is the same as the name of the function's

parameter in the CTL source code.

14

type() Returns a DataTypePtr that points to a DataType object, which describes the

FunctionArg's type. DataType objects are described in section 3.4.

isVarying() Indicates if the FunctionArg is varying or uniform.

data() Returns a void pointer that points to a buffer for the argument's value. Before calling a

CTL function, the application program must store values for the function's input

arguments in the corresponding buffers. After calling the CTL function, the application
can read the buffers for the output argument values and the return value.

hasDefaultValue() Returns true if the FunctionArg has a default value. Calling

setDefaultValue() makes the FunctionArg equal to the default value. The

application program can read a FunctionArg's default value by first calling

setDefaultValue() and then reading the contents of the buffer for the argument's

value.

3.4 DataType Objects

As the name suggests, the DataType of a FunctionArg indicates the type of the corresponding CTL function parameter.

Class DataType is the base of a C++ class hierarchy that describes CTL types. Each of the six fundamental CTL types is

represented by a class that is derived from DataType:

C++ class CTL type

BoolType bool

IntType int

UIntType unsigned int

HalfType half

FloatType float

VoidType void

Class DataTypePtr has a cast() member function template. The application program can call cast() to determine

whether a DataTypePtr points to a BoolType, IntType, etc. object. Knowing the CTL type of a function argument, the

application can cast the buffer for the argument's value to the appropriate C++ type. For example:

FunctionArgPtr arg = call->inputArg (0);
DataTypePtr type = arg->type();

if (BoolTypePtr boolType = type.cast<BoolType>())
{
 // CTL type bool

 bool *value = (bool *)arg->data();

 if (arg->isVarying())
 {
 // varying bool

 for (int i = 0; i < n; ++i)
 value[i] = ...;
 }
 else
 {
 // uniform bool

 value[0] = ...;
 }
}
else if (IntTypePtr intType = type.cast<IntType>())
{
 // CTL type int

 ...

15

}
...

3.5 ArrayType and StructType Objects

C++ classes ArrayType and StructType, which are derived from class DataType, represent CTL arrays and structs.

Class ArrayType has a fairly large number of member functions, but only a few are relevant here. The rest are used

internally by the CTL interpreter:

size() Returns the number of elements in the array.

elementSize() Returns the size, in bytes, of an individual array element.

objectSize() Returns the size, in bytes, of the entire array.

elementType() Returns a DataTypePtr that points to the type of the array's elements.

Multi-dimensional CTL array types are represented as nested one-dimensional arrays. For example, CTL type float[3] is

represented in C++ as an ArrayType object whose size(), elementSize() and objectSize() member functions

return 3, 4 and 12 respectively (assuming that the size of a float is four bytes). The elementType() function returns a

pointer to a FloatType. CTL type float[5][3] is represented by an ArrayType whose size(), elementSize()

and objectSize() functions return 5, 12 and 60. The elementType() function returns a pointer to the ArrayType for

CTL type float[3].

Accessing an array element requires some address arithmetic in order to find the memory location of the element. The following

example sets the value of element [x][y] of a varying two-dimensional array of float for pixel number i:

float v = ...;
FunctionArgPtr arg = call->inputArg (...);
DataTypePtr type = arg->type();
char *data = arg->data();

ArrayTypePtr arrayType;
ArrayTypePtr nestedArrayType;
FloatTypePtr elementType;

if ((arrayType = type.cast<ArrayType>()) &&
 (nestedArrayType = arrayType->elementType().cast<ArrayType>()) &&
 (elementType = nestedArrayType->elementType().cast<FloatType>()) &&
 arg->isVarying())
{
 // If we arrive here, we know that arg refers to a
 // varying two-dimensional array of float.
 // Compute the address of array element [x][y] for pixel i.

 char *addr = data +
 i * arrayType->objectSize() +
 x * arrayType->elementSize() +
 y * nestedArrayType->elementSize();

 // Set the array element equal to v.

 *(float *)addr = v;
}

C++ class StructType describes CTL structs. The following member functions are of interest to application programs that

want to pass structs to CTL functions:

name() Returns the name of the struct type.

objectSize() Returns the size, in bytes, of the entire struct.

16

members() Returns a pointer to an std::vector<Member> that describes the CTL struct's members.

C++ class Member has three fields: name is an std::string that indicates the member's

name, type is a DataTypePtr that describes the member's type, and offset indicates

the offset, in bytes, of the member from the beginning of the struct.

For example, CTL type

struct S
{
 int x;
 int y;
};

is represented by a StructType object whose name() and objectSize() member functions return "S", and 8

respectively (assuming that the size of an int is four bytes). members() returns a two-element vector. The type pointers

in both elements point to an IntType. The name fields are set to "x" and "y", and the offsets are 0 and 4.

3.6 Error Handling

When an operation such as loading a module or creating a FunctionCall object fails, the CTL interpreter reports the failure

by throwing a C++ exception. All exceptions thrown by the interpreter are derived from class std::exception. Calling an

exception's what() member function returns an error message that describes problem, for example, "Cannot load CTL module

'oid'. Opening file '/ctl/modules/oid.ctl' failed (permission denied).”

While attempting to load a module, the interpreter may find that the code in the module contains errors, for example, references

to undefined variables. In this case the interpreter prints one or more diagnostic messages before throwing an exception. By

default, those messages are printed by sending them to the standard error file, std::cerr. An application program can

redirect the messages by supplying its own message output function:

void
myMessageOutput (const std::string &message);
{
 ... // output the message
}
...

Ctl::setMessageOutputFunction (myMessageOutput);
...

The mechanism for diagnostic message output is also used by CTL's print statement. Rerouting diagnostic messages from the
interpreter also reroutes messages that are printed by the CTL program.

3.7 Breaking Infinite Loops

CTL programs may contain loops, and those loops could be infinite. If a CTL program enters an infinite loop, then the calling

C++ application program will hang. In order to prevent this, class Interpreter has two member functions that allow the

application to abort running CTL programs:

The setMaxInstCount() function limits the number of instructions that a CTL program can execute. If a program exceeds

the instruction limit, it aborts, and the C++ call to callFunction() that started the CTL program throws a

Ctl::MaxInstExc exception. What exactly an "instruction" is, depends on the interpreter back end. Typically an instruction

is a simple operation such as an addition, fetching the value of a variable, or storing a value in a variable. A CTL statement

typically corresponds to multiple instructions.

The abortAllPrograms() function aborts all currently running CTL programs. The C++ calls to callFunction() that

started the aborted CTL programs throw Ctl::AbortExc exceptions. abortAllPrograms() is useful only in multi-

threaded C++ programs. Since a thread that is already hanging in callFunction() cannot call any other functions, another

thread must call abortAllPrograms(). (It is not safe to call abortAllPrograms() from a signal handler; the call

could cause the interpreter to deadlock.)

17

3.8 Thread-Safety and Parallelism

The CTL interpreter was designed to be thread-safe. The threads in a multi-threaded C++ application program can share a

single Interpreter object. The Interpreter object uses mutual exclusion to protect its internal data structures when multiple

threads simultaneously call member functions such as loadModule() or newFunctionCall().

Multiple application threads can concurrently call different CTL functions or even the same function. In order to do this, each

thread must create its own private FunctionCall objects. FunctionCall objects are not thread-safe, and must not be

shared between threads.

With the SIMD interpreter back end, overlapping CTL function calls that are initiated by multiple application threads are
executed simultaneously. On a multi-processor computer, this allows the application program to accelerate CTL color

transforms by multi-threading: the input image is split into multiple pieces, and each thread applies the transforms to one piece.

Other interpreter back ends may exhibit less parallelism. For example, a GPU-accelerated back end might not be able to run
two independent CTL functions simultaneously. In this case overlapping calls initiated by multiple application threads would
have to be executed one after the other.

3.9 Accelerating the Transforms

The interpreter's SIMD back end is probably not fast enough for real-time processing of moving images or for high-resolution still
images. Writing a significantly faster back end is a non-trivial exercise.

On a computer with multiple processors, transforms can be accelerated by multi-threading. With n processors the image can

be split into n tiles, and each tile can be processed by a separate thread. The threads can share a single Interpreter

object, but each thread must use its own FunctionCall objects. Applying the transform to the image should be close to n

times as fast as with a single thread.

Depending on how many transforms must be applied to an image, and depending on the complexity of the CTL code for those
transforms, multi-threaded execution may still not be fast enough.

Because CTL does not allow static variables, all CTL programs are pure functions: the output of a CTL function call depends
only on the CTL source code and on the arguments passed to the function. The output does not depend on side effects of other

function calls.

Because transforms are pure functions, any transform or series of concatenated transforms can be tabulated. Typically, the

input and output images of a series of transforms each have three channels. The transforms may have other parameters, but
their values are uniform and do not vary from pixel to pixel. For a given set of uniform parameter settings, the series of

transforms becomes a function that maps a 3D point to another 3D point. Usually this function is continuous and can be
approximated by a 3D lookup table. The table can be generated automatically by applying the transforms to an appropriate set

of pixels.

Applying the table to an input image takes a constant amount of time, independent of the number or complexity of the

transforms from which the table was generated. On systems with GPU support, where the lookup table can be converted into a
3D texture, applying the table to an image can be made extremely fast. Multi-threading and tabulating the transforms should

make it possible to use the interpreter with the SIMD back end in real-time applications.

18

4 Design Decisions

4.1 Limited Set of Language Features

CTL is a fairly simple programming language, and it is missing features that are found in other languages. CTL was designed to

do two things: describe color transforms in an unambiguous way, and provide a portable implementation to run those transforms.

Typical color transforms are not algorithmically complex; except for lookup tables, most CTL programs are fairly short. CTL is

expressive enough to implement typical color transforms with reasonable effort. A number of features that one would want to
include in a general-purpose language were left out because those features would rarely be used by color transforms, and the

expected payoff would not justify the implementation effort. Examples include dynamic memory allocation, user-defined function
and operator overloading, or classes with member functions and inheritance.

CTL supports constant static data, but it disallows static variables. Without static variables, CTL functions cannot communicate
with each other, except by calling one another, and functions cannot retain state between invocations. This allows different

interpreter back ends to process pixels in whatever order works best, without affecting the results.

A second reason for disallowing static variables is security: Without static variables, it is very difficult to send or receive data via

covert channels such as steganographic encoding in an image's pixels.

4.2 No Support for Execute-Only Color Transforms

In files, CTL programs are always stored as source code. The CTL interpreter does not support an "unreadable" execute-only

representation for CTL programs. Such a representation might be desirable in situations where the author of a color transform
wants to allow someone else to use the transform without revealing how the transform actually works.

Designing an execute-only representation for CTL programs would not be too hard, but making it resistant to reverse-
engineering is nearly impossible. Since color transforms are pure functions, they can be probed and tabulated (see section 3.9).

With access to the interpreter's source code one could also write a reverse compiler that could turn an execute-only CTL
program into source code that is functionally equivalent to the original.

4.3 Portability

CTL programs are meant to be portable. Except for slight numerical differences (caused by rounding or by acceleration

techniques such as tabulating), running a given CTL program should produce the same results, independent of the operating
system or the C++ application that hosts the interpreter.

In order to avoid platform-dependencies, the CTL interpreter does not support extension modules written in other languages.
CTL programs can only import modules that are also written in CTL. The interpreter has no public interface for calling C++

functions from CTL. (CTL has a standard library of built-in functions, which are, at least for the SIMD back end, written in C++,
but this library is compiled into the interpreter, and the CTL-to-C++ function call mechanism is not part of the interpreter's
external interface.)

As mentioned above, CTL programs are always stored as source code. This representation is inherently portable. It would be

possible to support a portable binary file format for pre-compiled CTL programs. Loading CTL programs from binary files might
be faster than directly loading the source code, but since typical CTL programs are fairly short, binary files wouldn't save a lot of
time.

4.4 SIMD Back End

At present, the CTL interpreter comes only with one back end, which translates the CTL source into code for a SIMD virtual

machine. The virtual machine does not rely on special hardware such as graphics co-processors, or a main processor with
SIMD machine instructions. The SIMD interpreter back end is fast enough to be usable, but other implementations could be

significantly faster.

The SIMD back end provides a portable reference implementation of CTL. The SIMD back end runs on any platform that

supports C++, and it defines a standard for "correct" execution of CTL programs that other back ends must match. By definition,
the SIMD reference implementation is always correct.

19

4.5 Security

Image files and their associated color transforms are meant to be routinely exchanged between various parties. CTL color

transforms are programs, and in general, running programs of unknown provenance might carry a risk of running malicious
software such as Trojan horses or viruses.

Introducing malicious software into a computer system via CTL programs is very difficult because the language is restricted.
CTL programs have no access to the host computer's file system, system calls, clock, communication protocols, or raw memory;

and CTL programs cannot load extension modules that are written in languages other than CTL. Barring bugs in the interpreter,
the only data that CTL programs can see or modify are the arguments passed to CTL functions that are called directly by a C++

application program. CTL's lack of static variables prevents CTL programs from remembering any data between calls.

CTL programs cannot capture information about the host system, they cannot send data somewhere else, and they cannot gain

control of the host machine.

20

5 CTL Language Reference

This section provides a reference for the CTL programming language. CTL is derived from the C programming language, with
some elements borrowed from C++. This reference assumes the reader is familiar with C, and at least syntactical elements of
C++. C is defined by standard ISO/IEC 9899, and C++ is defined by standard ISO/IEC 14882.

5.1 Syntactic Notation

The language grammar is included in its entirety in Section 5.8, and is quoted in many of the sections that follow. Syntactic

categories are printed in this font. Text that appears literally in programs is printed in this font. For syntactic rules,

alternatives appear on separate lines. The special symbol Ø means that the empty string or “nothing” is a valid alternative. For

example:

importList:

 Ø

 importStatement importList

importStatement:

 import stringLiteral ;

Means that an importList can be either the empty string or an importStatement followed by an importList. An importStatement

consists of the keyword import, followed by a stringLiteral and a semicolon.

5.2 Lexical Elements

The text in a CTL files is tokenized using white space to delineate tokens. White space consists of spaces, tabs and new-lines,
and tokens are one of the following:

token:

 keyword

 name

 punctuator

 literal

There is only support for ASCII characters; Unicode or other larger character sets are not supported; trigraph sequences,
alternate names and universal character names of C++ are not supported.

No C-style preprocessing occurs in CTL, and there are no preprocessing tokens.

5.2.1 Keywords

The CTL keywords are primarily a subset of C++ keywords, with a few additions. Here are keywords in common with C++:

bool
const
false
float
for
if
int
long
return
short
signed
struct
true
unsigned
void

21

while
namespace

These are also CTL keywords:

ctlversion
half
input
output
print
uniform
varying

The following are reserved as keywords but are not used:

break
continue
string

Names must begin with a non-digit character A through Z or '_', and in other ways conform to the C specification of identifiers,
except that there are no predefined identifiers. For example, these are valid names:

foo2 foo_bAr_34 __func__ ____

and these are not valid names:

2foo \foo -fred-

5.2.2 Punctuators

Punctuators are the following subset of C:

[] () { } . * + - ~ ! / % << >> < > <= >= == !=
^ & | && || ; = ,

The following C punctuators are not part of the CTL language:

-> ++ -- ? : ... *= /= %= += -= &= ^= |= <<= >>= # ##
<: :> <% %> %: %:%:

5.2.2.1 Comments

Both comment types, // and /*, are supported in CTL as specified in C++.

5.2.3 Literals

There are six types of literals; the five that exist in C++, plus a half-literal:

literal:

 integer-literal

 floating-literal

 string-literal

 boolean-literal

 half-literal

5.2.3.1 Integer Literals

Integer literals include decimal, hexadecimal and octal literals, as specified in C++.

22

5.2.3.2 Floating Literals

Floating literals behave as specified in C++, except that the F and L suffix (the floating-suffix) are not allowed. For example,

the following are valid floating literals:

1.2 1.2e2 .02 0.02

These are not valid floating-literals:

1.2F 1.2f 1.2l 1.2L

5.2.3.3 Half Literals

Half literals are similar to floating literals, but have a letter h (or H) suffix to differentiate them. Half literals have type half. The

following are valid half literals:

1.2h 1.2e3h 3e-02H

5.2.3.4 String Literals

String-literals are as specified in C++, except that there is no support for wide literals; The optional prefix letter L is not
supported. CTL is designed for implementing data transforms, so for simplicity string literals can only be used as inputs to the
print statement (primarily intended for debugging) and the import directive.

In CTL the character strings used in the import directive are simply string literals. (In C++ there are slightly different rules

governing the filename specifier used in the #include directive.) The import directive is described in Section 5.3.3.

5.2.3.5 Boolean Literals

Boolean literals, as in C++, consist of true and false and have type bool.

5.3 Basic Concepts

5.3.1 Varying Values

CTL is designed to succinctly describe color transforms. A CTL program describes the operations that are performed on a
single pixel of an image. Syntactically, the operations that constitute a color transform take the form of a CTL function. When a
transform is applied to an image, the corresponding CTL function is called repeatedly, once for every pixel in the image. The
values of some of the function's parameters vary from one pixel to the next, for example, the red, green and blue channels of
pixels in an RGB image. These are called “varying” values. The values of other parameters are the same for all pixels; these
are called “uniform” values.

Whether the parameters of a CTL function are meant to be varying or uniform matters to a C++ application that calls the CTL
function. The application needs to know if a CTL function's parameter refers to per-pixel data (that is, to an image channel) or
not. However, the CTL function itself does not depend on, and cannot even determine, whether a value is varying or uniform.

5.3.2 What is A CTL Program

A CTL program at the highest level is a list of function definitions, constant definitions and struct type definitions. Import
statements and name spaces are also available to ease modularization. A CTL program may be split into multiple modules.

Note that a CTL program cannot contain global variables. Global constants are allowed, but all variables are local to functions.

5.3.3 Modules

The contents of single CTL source file are referred to as a “module”. Each module has a name. In order to make the
constants, struct type definitions and functions in a module available, a CTL interpreter must “load” the module. After a module
has been loaded, the functions defined in the module can be called, and the type definitions and constants in the module may
be used by other modules.

23

Modules can load other modules via import directives, which specify the names of the modules to be loaded. Import directives
must occur before any of the module's definitions but after an optional CTL version statement:

module:

 ctlVersionStatement importList moduleBody

importList:

 Ø

 importStatement importList

importStatement:

 import stringLiteral ;

A module is loaded only once. If subsequent import statements referring to the same module are encountered, the interpreter
ignores them.

The mechanism that loads CTL modules is implementation specific; the reference CTL interpreter loads modules from files.

The name of the file that contains a given module is formed by appending “.ctl” to the module name. An environment

variable, CTL_MODULE_PATH, specifies a list of directories, or folders, which are searched in order to locate the file (See
section 3.2).

5.3.4 CTL Version

An optional CTL version statement at the beginning of a module specifies the version of CTL for which the module was written:

ctlVersionStatement:

 Ø

 ctlversion intLiteral ;

The definition of CTL as described in this document has been assigned version number 1. CTL may be extended in the future;
when that happens, a new, higher version number will be assigned to the extended definition. Modules written for an extended
version of CTL may not run with an interpreter that implements an older version of the language.

If the CTL interpreter encounters a version statement while attempting to load a module, it compares the interpreter’s CTL
version and the version specified in the version statement. If the specified version is greater than the interpreter’s version, the
interpreter prints a message to warn the user that loading the module may fail. The interpreter then continues the loading
process, regardless of the specified version.

5.3.5 Name Spaces

Only one name space can be defined per module. If there is a name space declaration, it occurs at the beginning of the module
and encloses all definitions in the module in curly braces. If no name space is declared in a module, then the module's
definitions create names in the global name space.

moduleBody:

 funcConstStructList

 namespace name { funcConstStructList }

If a name space is specified, every definition in the module belongs to that name space. A particular name space can be used
by multiple modules.

Outside of a name space, constants, structures and functions belonging to the name space must be qualified by the name

space's name. As in C++ the :: operator indicates name space qualification:

scopedName:

 name

 name :: name

 :: name

Note that compound statements (also called blocks) such as function bodies create nested anonymous name spaces. Variables
defined in functions cannot be accessed outside the function body, but can be accessed without qualifiers by blocks nested in
the function.

24

If an unqualified name (without the :: operator) is used to refer to a type or an object, the interpreter checks the containing

name spaces, starting with the local (most nested) name space and proceeding through less nested name spaces until the

global name space. If a name is preceded by a :: operator, then the name refers to a type or an object in the global

namespace. If a name is preceded by a name space name and a :: operator, then it refers to a type or an object in the

corresponding namespace.

For example:

In module MyModule:

namespace MyLib
{

 const int i1 = 0;
 const int i2 = 0;

 void
 myFunc()
 {
 const int i1 = 1;

 {
 int i = i1; // assigns 1 to i
 int j = MyLib::i1; // assigns 0 to j
 int k = i2; // assigns 0 to k
 }
 }
}

In a separate module:

import "MyModule";

const int i1 = 3;

void
myFunc()
{
 int i = ::i1; // assigns 3 to i
 int j = MyLib::i1; // assigns 0 to j
}

There is no equivalent to the using declaration from C++.

The :: operator is only used to reference name space names; CTL does not support classes, and structs support only local

data variables.

5.3.6 Definitions

Objects and struct types in CTL are declared and defined at the same time. There are no “forward declarations” that indicate
the existence of an object or type, without also defining it.

There can only be one definition of any variable, function or struct type in a CTL program.

The body of a CTL module contains a list of functions, constant definitions and struct type definitions.

funcConstStructList:

 Ø

 funcConstOrStruct funcConstStructList

funcConstOrStruct:

 function

 constantDefinition

 structDefinition

25

Storage of variables is automatic; storage is guaranteed to be allocated while the variable is in scope and will be deallocated
after the variable goes out of scope.

There are no memory allocation or deallocation functions (CTL does not support dynamic storage) and there are no custom
constructors or destructors.

Uninitialized data may be set to zero or not, depending on the implementation.

5.3.7 Scope

As in C++, variable scope extends from the point of definition to the end of the containing block, except when a more local

variable is present to take precedence. The following function runs to completion (as in C, assert(x) does nothing if x is

true, and aborts the program if x is false):

void
testScope2()
{
 int i = 0;
 {
 assert(i == 0);
 int i = 3;
 assert(i == 3);
 }
 assert(i == 0);
}

Functions cannot be nested and thus their scope extends from the point of definition to the end of the module.

5.3.8 Initialization of Constants, Evaluation of Constant Expressions

The initialization of global constants, including the evaluation of expressions required for their initialization, is performed once,
when the module that contains the constants is loaded. Expressions that have constant value may be evaluated any time after
they are parsed. The reference interpreter evaluates and simplifies expressions with constant value immediately after they are
parsed.

5.3.9 Types

CTL is a strongly typed language, with a set of types similar to C++.

5.3.9.1 Fundamental Types

There are six fundamental types in CTL:

bool
int
unsigned
unsigned int
half
float
void

The unsigned type qualifier by itself is shorthand for unsigned int. The int and unsigned int types are 32-bit

signed and unsigned integral numbers. The float type is a 32-bit floating-point number.

The half type is a 16-bit floating point number, which can be used in arithmetic expressions anywhere a float can be used.

Conversions from half to float are lossless, but conversions from float to half may be rounded to the nearest

representable half. An overflow may occur when converting a float to a half, if the float value is beyond the range of

representable half values, which will result in the value being an infinity with the same sign as the float value.

Type void is used only to indicate that a function does not return a value.

26

String literals are of type “string”, but can only be used in import directives and the print statement. It is not possible to declare
variables or function parameters of type string, or structs with members of type string or arrays of strings. There are no
operators whose operands are strings.

There is no equivalent to the C++ types char, short or long.

5.3.9.2 Compound Types

There are two kinds of compound types in CTL, structs and arrays. There is no equivalent to C++ pointers, or enum and

union types.

5.3.9.2.1 Struct Types

A struct is a collection of named objects, similar to the C struct. Struct type equivalence in CTL is based on the scoped name of
the type, rather than the members of the struct. Two types are the same if they were declared using the same type name in the
same name space. Two structs with different scoped type names are not equivalent, even if they have the same members.

5.3.9.2.2 Array Types

An array is a sequence of objects of the same type, as in C. Array types consist of a base type and a sequence of sizes, one
size for each dimension of the array.

5.3.10 Const Qualifier

A variable can be defined as const, which specifies that it cannot be modified – it cannot be used on the left hand side of an

assignment. A variable that has been defined as const is called a constant. Function arguments with the input qualifier are

const as well, as explained in section 5.4.3.

5.3.11 Type Conversion

There is no explicit casting operator in CTL. Implicit type conversion occurs in arithmetic expressions, assignments, initialization
and function calls.

For the purpose of implicit type conversion, all arithmetic types have a rank. The list of types in increasing rank order is bool,

int, half, and float. The unsigned and signed int types have the same rank. As in C++, a type conversion to a

higher rank, called a promotion, does not change the value. Other type conversions do occur in some situations, and may
change the value represented, as specified in C++.

If a type is used in a place where a type with higher rank is expected, the type is promoted to the expected type. If a type is
used in a place where a lower or equal rank is expected, the syntax may or may not be valid depending on the type of
expression or statement, as explained in the following sections. If it is valid syntax, a type conversion is performed from the
actual type to the expected type. For example:

int i = 2.7;
float f = 2.3;

if(f > i)
 i = ~f; // error int operand expected

In the first initializer, the float literal 2.7 is converted to an int type with value 2. In the expression involving the binary >

operator, f > i, the value of i has type int, and is converted to a float (with no change in value). The bitwise complement

operator (~) accepts only integer operands, so the expression ~f is malformed.

It is not possible to convert a compound type to any other type. Any fundamental type can be converted to any other

fundamental type except void, but some expressions only allow type promotion.

27

5.4 Definitions

As mentioned previously, the bulk of a CTL module is a list of definitions, including struct type definitions, constant definitions
and function definitions. Definitions of variables and struct types also may occur in the body of a function.

5.4.1 Struct Type Definitions

A subset of the syntax for defining structs in C++ is allowed:

structDefinition:

 struct name { structMemberDefinitions } ;

structMemberDefinitions

 Ø

 baseType name arraySize ; structMemberDefinitions

For example:

struct Mixed
{
 int i;
 float f;
 bool b;
 half ah[2];
};

As in C++, this defines a new type, Mixed, which can be used in subsequent variable declarations. Definitions for structs can

be placed in the global name space, inside named name spaces, or in the anonymous local name spaces of functions or code

blocks. The struct keyword can only be used to define a new struct type. In contrast to C++, the type definition is always a

separate statement from struct variable definitions, and there is no facility for creating unnamed struct types.

5.4.2 Variable Definitions

Variable definitions are specified as follows:

variableDefinition:

 baseType name arraySize ;

 constness baseType name arraySize = expression ;

 constness baseType name arraySize = compoundInitializer ;

 constness baseType name arraySize , expression ;

constness:

 Ø
 const

arraySize:

 Ø
 []

 [expression]

If a variable definition occurs outside a function body, the variable type must be const. The complete grammar refers to this

subset as the constantDefinition.

The first three forms of variable definition of fundamental types are syntactically as specified in C++. For example:

int i; // value undefined
half h = 1.201e2;
float f = 2.1*h;
bool b = someBooleanFunc(f,h);

28

Compound objects are initialized using nested lists enclosed in braces. The length and nesting of the initializer must exactly
match the length and depth of the compound type being initialized (in contrast to the various initialization options supported
in C).

Here are some examples, using the Mixed struct defined in the previous section:

Mixed m1;
Mixed m2 = {1, 1.0, false, {1,2}};
Mixed m3 = {1, 1.0}; // error in CTL (ok in C++)

Mixed am1[2] = {{1, 1.0, false, {1,2}},
 {2, -1.0, true, {-1,-2}}};
Mixed am2[2][1] = {{{1, 1.0, false, {1,2}}},
 {{2, -1.0, true, {-1,-2}}}};
Mixed am3[1][2] = {{{1, 1.0, false, {1,2}},
 {2, -1.0, true, {-1,-2}}}};

When an initialization is included in the definition, the size specification (the expression between brackets) may be omitted:

Mixed am3b[][] = {{{1, 1.0, false, {1,2}},
 {2, -1.0, true, {-1,-2}}}};

An comma-separated initialization expression may also be used to initialize a variable or constant. This allows a constant to be
initialized by passing it as an output parameter to a function. For example:

void
initArray (output float x[])
{
 for (int i = 0; i < x.size; i = i+1)
 x[i] = i;
}

const float f[100], initArray (f);

For the duration of the initialization expression, the variable or constant has non-const type and is defined as though no

initializer were present. In the example above, the variable f is set by the function initArray(). Once the expression is

evaluated, f has const type and may no longer be modified.

5.4.3 Function Definitions

They syntax of function definitions is as follows:

function:

 returnType name (parameterList) compoundStatement

parameterList:

 Ø

 nonEmptyParameterList

nonEmptyParameterList:

 parameter

 nonEmptyParameterList , parameter

parameter:

 input inputParameter
 inputParameter

 output outputParameter

compoundStatement:

 { statementList }

Function arguments in CTL are passed by reference. All arguments types have one of two qualifiers, input or output.

Input parameters have const type and cannot be modified in the body of the function. Parameters without qualifiers are input

29

parameters. Output parameters are intended to store the result of the function, but an output parameter does have an initial
value that is determined by the function's caller. Here is an example:

bool
foo (output float f, half h)
{
 // h = 2.0; // error, h is an input parameter

 if (h > f)
 {
 return false;
 }
 else
 {
 f = h;
 return true;
 }
}

bool
bar ()
{
 float f = 2;
 foo (f, 3); // returns false
 foo (f, 1); // assigns 1 to f, returns true
}

5.4.3.1 Function Parameters

The syntax of function parameters is as follows:

inputParameter:

 varyingHint baseType name arraySize

 varyingHint baseType name arraySize = compoundInitializer

 varyingHint baseType name arraySize = expression

outputParameter:

 varyingHint baseType name arraySize

varyingHint:

 Ø
 varying
 uniform

The definition of a parameter may include a hint as to whether the parameter is meant to be varying or uniform. If neither

varying nor uniform is specified, then the parameter is assumed to be uniform. The varying or uniform hint is only of

interest to C++ applications that want to call CTL functions. The function can actually be called with any argument being varying
or uniform, regardless of the hint.

A default value for an input parameter can be specified by providing an initializer or expression assignment (as in C++). If the
function is called with fewer arguments than the function has parameters, then default values are used for the unspecified
parameters. The expression specifying a parameter's default value must have constant type – it must be possible to evaluate it
at compile time. Parameter default expressions cannot refer to other parameters, and output parameters cannot have default
values.

void
copyWDefaults(output int aiOut[2], int aiIn[2] = {1, 2})
{
 for(int i = 0; i < 2; i=i+1)
 {
 aiOut[i] = aiIn[i];
 }
}
...

30

int ai[2];
copyWDefaults(ai, ai2); // sets ai[0] to 1 and ai[1] to 2

5.4.3.2 Variable-Size Arrays

If a function argument is an array type, one or more of its sizes can be unspecified, by leaving the size blank. These array
arguments are called variable-size arrays, and allow a function to be called with parameters that have any size in the

unspecified dimensions. For example, the previous example could have been written using variable-size arrays and the size

operator:

void
copyVarying(output int aiOut[], int aiIn[] = {1, 2})
{
 if(aiOut.size != aiIn.size)
 return;

 for(int i = 0; i < aiOut.size; i=i+1)
 {
 aiOut[i] = aiIn[i];
 }
}

As stated in Section 5.3.9.2.2 the type of an array consists of its base type and a sequence of array sizes, one per dimension.
When a function call is parsed, if a particular array dimension is variable-sized, that dimension is not considered in the type
checking of the arguments. As long as the base type and dimensions with specified sizes match the passed arguments, the

array is considered a type match. For example, float[][2][] is considered the same type as float[1][2][3] and

the same type as float[100][2][300]. The above function can be called as follows:

 int ai[2];
 int ai2[] = {3,4};
 copyVarying(ai, ai2);
 assert(ai[0] == 3 && ai[1] == 4);

 int ai3[] = {-1};
 int ai4[] = {-2};
 copyVarying(ai3); // returns without copying
 assert(ai3[0] == -1); // because aiIn[] uses default
 copyVarying(ai3, ai4);
 assert(ai3[0] == -2);

In the body of a function definition, variable array types do not match any other type – not even other variable-size arrays. As a
result, expressions with varying types cannot be used in some statements, such as assignment or initialization.

void
varyingBody(output int ai1[][2],
 output int ai2[][3],
 output int ai3[][2])
{
 ai1 = ai2; // error - int[][2] != int[][3]
 ai1 = ai3; // error - int[][2] != int[][2]
 int aiL1[][2] = ai1; // error

 ai1[0] = ai3[0]; // ok - int[2] == int[2]

 int aiL2[ai1.size][2]; // error - size unknown at
 // compile time
}

Only function arguments can have variable sizes; it is not possible to define a variable-size local variable.

The size operator returns the size of the left-most dimension for a given-type. To extract the size of other dimensions, the size

operator must be used in combination with the array index operator. If the dimension is variable, the size operator is

evaluated at run time. The size operator evaluates to an integer at compile time if the size of the tested dimension is not

variable.

31

void
testArraySize(int aiArg[1][][2])
{
 assert(aiArg.size == 1); // = 1 at compile time
 assert(aiArg[0].size == 3); // unknown at compile time
 assert(aiArg[0][0].size == 2); // = 2 at compile time
}
...

int ai3d [1][3][2];
testArraySize(ai3d);

int ai3d2 [1][2][2];
testArraySize(ai3d2); // assert fails

Variable-sized arrays cannot be returned by functions.

5.5 Statements

The body of a function contains a list of statements. Statements include the variable and struct type definitions described
above, plus familiar C-style statements for other purposes, such as control flow, assignment, and expression:

statement:

 variableDefinition

 structDefinition

 compoundStatement

 whileStatement

 forStatement

 ifStatement

 assignment

 expressionStatement

 nullStatement

 printStatement

 returnStatement

There are no switch, do, jump, break, or continue statements.

5.5.1 Compound Statements

Compound statements, also called code blocks, are curly braces containing a list of statements. As in C/C++, they are used in
the bodies of other control structures, such as for loops and if statements, but may also stand on their own.

compoundStatement:

 { statementList }

statementList:

 Ø

 statement statementList

Statements contained in the statementList of a compound statement have their own local name space, as described in Section

5.3.5.

5.5.2 While Statements

The while statement has the same form as in C++:

whileStatement:

32

 while (expression) statement

The while statement is evaluated over and over until the expression is false. During each evaluation, the expression is

evaluated and its type is converted to type bool. If the result is true, the trailing statement is evaluated.

5.5.3 For Statements

The for statements have the following form:

forStatement:

 for (forInitStatement ; expression ; forUpdateStatement) statement

forInitStatement:

 variableDefinition

 assignment

 expressionStatement

forUpdateStatement:

 simpleAssignment

 simpleExpressionStatement

A for statement is similar to its namesake in C/C++, in that it contains an initialization, conditional test and an update

statement, but the form is more restricted. The initialization can contain one variable definition, assignment or expression (as
opposed to lists of them). The update statement consists of a single assignment or expression statement. Expressions and
expression statements are explained below.

5.5.4 If Statements

The if statements have the form as specified in C++.

ifStatement:

 if (expression) statement

 if (expression) statement else statement

The expression is evaluated and its type converted to a Boolean. If the expression is true, the statement is executed. If the

expression is false, the optional statement following the else is executed.

5.5.5 Assignments

The assignment statement sets the value of an object on the left hand side.

assignment:

 simpleAssignment ;

simpleAssigment:

 expression = expression

The left hand side must evaluate to an object that is modifiable. The right hand side must be either the same type as the left
hand side or a type that can be converted to the left hand side type. If the right hand side is not the same type as the left hand
side, a type conversion will occur.

Assignments can use any modifiable type on the left hand side, including compound types. For example:

void
sampleAssignments()
{
 int ai1[1][2];
 int ai2[2] = {1,2};
 ai1[0] = ai2;
}

33

Notice also the example in Section 5.6.1.

There are no compound assignment operators, such as += or -=.

In CTL, assignments are statements, not expressions; a statement such as

a = b = c;

is not allowed.

5.5.6 Expression Statements

As in C++ any expression can stand alone as a statement with a semicolon appended.

expressionStatement:

 simpleExpressionStatement ;

simpleExpressionStatement:

 expression

Expressions are discussed in Section 5.6. The expression statement is useful only for its side effects, for example in calling a
function with output arguments.

5.5.7 Null Statements

As in C or C++, a blank statement followed by a semicolon can be used wherever a statement may occur, to indicate that no
operation is to be performed.

nullStatement:
 ;

5.5.8 Print Statements

A print statement is provided to assist with debugging CTL programs, or to provide very limited user feedback. A print statement
outputs the result of expressions to the standard output:

printStatement:

 print (exprList) ;

exprList:

 Ø

 nonEmptyExprList

nonEmptyExprList:

 expression

 nonEmptyExprList , expression

Each expression in the exprList can have any of the fundamental types or be a string literal. The underlying implementation

should convert each of the fundamental types to characters in some intuitive way. The reference implementation calls the

default C++ stringstream << operator. For example:

bool b = false;
float f = -.00000012;
print("b = ", b, ", f = ", f);
print(", random literals: ", 4, ", ", 3.00977h,"\n");

causes the following to be generated in the reference implementation:

b = 0, f = -1.2e-07, random literals: 4, 3.00977

The print statement does not print compound types.

34

If a varying expression is passed to the print statement, the print statement may print multiple values, one per pixel. Print
statements do not in any way affect the values returned by CTL transformations, so the exact formatting is not specified. This
flexibility makes the print statement easier to implement, but limits its usefulness beyond debugging.

The reference implementation is described here as an example; the details in the remainder of this section are not part of the
language specification.

The reference implementation prints a varying expression inside of brackets with the word varying appearing first. CTL

functions are run simultaneously on arrays of values of a particular length, and the function calls are called with arrays of this
length until pixels have been processed. The print statement outputs all the values at once from a particular varying function
array's function call.

For example, if f is a varying argument the implementation may call the function printExample on arrays of f values of

length 5. A particular evaluation instance with values 1.2, 0, 0, -1.001, and 0, for the following function:

void
printExample(input varying float f)
{
 print("all f: ", f, "\n");
 if(f > 1)
 print ("f > 1: ", f, "\n");
}

generates the following output:

all f: [varying (0, 1.2) (1, 0) (2, 0) (3, -1.001) (4, 0)]
f > 1: [varying (0, 1.2)]

In practice the run time engine is most efficient when it runs on thousands of values, and images have millions of pixels. When
the print function is called on a varying value in practice, the reference run-time engine generates thousands of separate print
statements, each of which is very long – only useful as a focused debugging technique.

5.5.9 Return Statements

The return statement is used to terminate a function and to optionally return a value:

returnStatement:
 return ;

 return expression ;

As in C++, the expression can be omitted only in functions with void type.

5.6 Expressions

An expression is the combination of values, objects and operands that specify a value or call a function, as specified in the C
and C++ standards.

The expression grammar is simpler than the C++ grammar because there are fewer operators and fewer side effects from

expressions. The language does not have the sizeof operator, conditional operator (x? a:b), comma operator or any

compound assignment operators (+=, ^= etc.).

There are also no explicit cast operators or function pointers. Side effects from expressions are limited to calls of functions with
output parameters and the print statement. There are no assignment expressions – assignments occur in assignment
statements only and cannot be nested.

Operator precedence is as specified in C++.

5.6.1 Primary Expressions

A primary expression is the simplest expression building block, consisting of a literal, a variable name, function call or some
combination of member names or array access expressions.

primaryExpression:
 true

35

 false
 intLiteral

 floatLiteral

 halfLiteral

 stringLiteral

 (expression)
 scopedName memberArrayExpression

 scopedName (exprList)

memberArrayExpression:

 Ø

 . name memberArrayExpression
 . size

 [expression] memberArrayExpression

Struct members and functions must be referred to explicitly by name. The member array expressions and function call are the
only postfix operators supported. As in C++, struct member access and array subscripting can be arbitrarily nested, and
multidimensional arrays are indexed by multiple repeated subscripts. The following demonstrates some nested primary
expressions used in assignments.

void
sampleExpressions()
{
 struct Inside {int i[2];};
 struct Outside {Inside ain[2][3];};

 Inside in = {{1,2}};

 Outside out = {{{{{0,1}},{{2,3}},{{4,5}}},
 {{{6,7}},{{8,9}},{{10,11}}}}};

 in = out.ain[0][1];
 assert(in.i[0] == out.ain[0][1].i[0]);
}

As described in Section 5.4.3.2, the size of an array can be determined using the size operator. Structs can not have a

member named size, but variables can be named size.

5.6.2 Arithmetic Expressions

The following table summarizes the arithmetic operators that are supported. It is the complete set of arithmetic operators with
the same precedence as in C++, but the type conversion process is somewhat different from C++.

Name in Grammar Operator Result Operand Type Result Type

unaryExpression - x negative arithmetic type of x

 ~ x bitwise complement integer type of x

 ! x bitwise not arithmetic type of x

mulitplicativeExpression x * y multiplication arithmetic higher rank type of x or y

 x / y division arithmetic higher rank type of x or y

 x % y remainder of division of x by y integer higher rank type of x or y

additiveExpression x + y addition arithmetic higher rank type of x or y

 x - y subtraction arithmetic higher rank type of x or y

shiftExpression x << y bitwise shift x left y digits integer higher rank type of x or y

 x >> y bitwise shift x right y digits integer higher rank type of x or y

36

Name in Grammar Operator Result Operand Type Result Type

relationalExpression x < y true if x is less than y arithmetic higher rank type of x or y

 x > y true if x is greater than y arithmetic higher rank type of x or y

 x <= y true if x is less than y or x equals

y
arithmetic higher rank type of x or y

 x >= y true if x is greater than y or x

equals y
arithmetic higher rank type of x or y

equalityExpression x == y true if x equals y arithmetic bool

 x != y true if x is not equal to y arithmetic bool

bitAndExpression x & y bitwise and integer higher rank type of x or y

bitOrExpression x | y bitwise or integer higher rank type of x or y

bitXorExpression x ^ y bitwise exclusive or integer higher rank type of x or y

andExpression x && y sequential and: false if x

converted to bool is false,

otherwise y, converted to bool. If x

is false, then y is not evaluated.

arithmetic bool

orExpression x || y sequential or: true if x converted to

bool is true, otherwise y,

converted to bool. If x is true,

then y is not evaluated.

arithmetic bool

In expressions with two operands, if the operands are not the same type, a type conversion will occur. If possible, the left
operand is promoted to the type of the right operand. Otherwise, if possible, the right operand is promoted to the type of the left
operand. If neither promotion is possible, the expression is not valid.

In expressions requiring integer operands, Boolean operands are promoted to integers. Such operations are not permitted on

operands with float or half types.

The functions in Section 5.7.2 can be used to test if an arithmetic expression generates a result that is a not a number. It is
recommended that the underlying platform does not attempt to trap floating point exceptions during execution of a CTL program.

37

5.7 Standard Library

CTL has a standard library of built-in functions and numeric constants, which are described below.

5.7.1 Numeric Constants

Type Name Value

float M_E e (approximately 2.7182818)

float M_PI π (approximately 3.1415927)

float FLT_MAX the largest positive number that is exactly representable as a float

float FLT_MIN the smallest positive number that is exactly representable as a normalized float

float FLT_EPSILON the smallest positive ε such that ε+1 is exactly representable as a float

float FLT_POS_INF +∞

float FLT_NEG_INF −∞

float FLT_NAN a quiet NaN (not-a-number)

half HALF_MAX the largest positive number that is exactly representable as a half

half HALF_MIN the smallest positive number that is exactly representable as a half

half HALF_EPSILON the smallest positive ε such that ε+1 is exactly representable as a half

half HALF_POS_INF +∞

half HALF_NEG_INF −∞

half HALF_NAN a quiet NaN (not-a-number)

int INT_MAX the largest positive integer that can be stored in an int

int INT_MIN the largest negative integer that can be stored in an int

unsigned int UINT_MAX the largest integer that can be stored in an unsigned int

5.7.2 Floating-Point Number Classification

bool isfinite_f (float x);
bool isfinite_h (half x);

returns true if x is finite, that is, if x is not +∞ , −∞ or a NaN; returns false otherwise

bool isnormal_f (float x);
bool isnormal_h (half x);

returns true if x is a normalized number; returns false otherwise

bool isnan_f (float x);
bool isnan_h (half x);

returns true if x is a NaN; returns false otherwise

bool isinf_f (float x);
bool isinf_h (half x);

returns true if x is +∞ or −∞ , that is, if x is an infinity; returns false otherwise

38

5.7.3 Elementary Functions

float acos (float x);

returns the arc cosine of x. The result is in radians, and between 0 and π .

float asin (float x);

returns the arc sine of x. The result is in radians, and between
2

π
− and

2

π
+ .

float atan (float x);

returns the arc tangent of x. The result is in radians, and between
2

π
− and

2

π
+ .

float atan2 (float y, float x);

returns the arc tangent of
x

y
, but takes the signs of x and y into account to determine the quadrant of the result.

The result is in radians, and between π− and π+ .

float cos (float x);

returns the cosine of x, where x is given in radians

float sin (float x);

returns the sine of x, where x is given in radians

float tan (float x);

returns the tangent of x, where x is given in radians

float cosh (float x);

returns
2

xx ee −+

float sinh (float x);

returns
2

xx ee −−

float tanh (float x);

returns
xx

xx

ee

ee
−

−

+

−

float exp (float x);

returns xe

half exp_h (float x);

a faster version of exp(x) that returns a value of type half

39

float log (float x);

returns the natural logarithm of x

float log_h (half x);

a faster version of log(x) where x is of type half

float log10 (float x);

returns the base-10 logarithm of x

float log10_h (half x);

a faster version of log10(x) where x is of type half

float pow (float x, float y);

returns yx

half pow_h (half x, float y);

a faster version of pow(x,y) where x and the return value are of type half

float pow10 (float x);

returns pow(10,x)

half pow10_h (float x);

a faster version of pow10(x) that returns a value of type half

float sqrt (float x);

returns x

float fabs (float x);

returns the absolute value of x

float floor (float x);

returns an integral value, i, such that 10 <−≤ ix

float fmod (float x, float y);

returns ynx ⋅− , where n is an integer such that n has the same sign as
y

x
 and 10 <−≤ n

y

x

float hypot (float x, float y);

returns 22 yx +

5.7.4 Operations on 3D Vectors, 3x3 Matrices and 4×4 Matrices

float[3] mult_f_f3 (float f, float x[3]);

scalar-times-vector multiplication, returns xf ⋅

40

float[3] add_f3_f3 (float x[3], float y[3]);

vector addition, returns yx +

float[3] sub_f3_f3 (float x[3], float y[3]);

vector subtraction, returns yx −

float[3] cross_f3_f3 (float x[3], float y[3]);

cross product, returns yx ×

float dot_f3_f3 (float x[3], float y[3]);

dot product, returns yx ⋅

float length_f3 (float x[3]);

vector length, returns xx ⋅

float[3][3] mult_f33_f33 (float A[3][3], float B[3][3]);
float[4][4] mult_f44_f44 (float A[4][4], float B[4][4]);

matrix-times-matrix multiplication, returns BA ⋅

float[3][3] mult_f_f33 (float f, float A[3][3]);
float[4][4] mult_f_f44 (float f, float A[4][4]);

scalar-times-matrix multiplication, returns Bf ⋅

float[3][3] add_f33_f33 (float A[3][3], float B[3][3]);
float[4][4] add_f44_f44 (float A[4][4], float B[4][4]);

component-wise matrix addition, returns BA +

float[3][3] invert_f33 (float A[3][3]);
float[4][4] invert_f44 (float A[4][4]);

matrix inversion, returns 1−A if A is invertible, or I if A is not invertible

float[3][3] transpose_f33 (float A[3][3]);
float[4][4] transpose_f44 (float A[4][4]);

matrix transposition, returns TA

float[3] mult_f3_f33 (float x[3], float A[3][3]);

vector-times-3×3-matrix multiplication; returns Ax ⋅ , where x and the result, y, are interpreted as row vectors

float[3] mult_f3_f44 (float x[3], float A[4][4]);

vector-times-4×4-matrix multiplication; returns Ax ⋅ , where x and the result, y, are interpreted as row vectors with

homogeneous coordinates, (x[0], x[1], x[2], 1) and (y[0], y[1], y[2], 1)

Note the order of the operands in the vector-times-matrix functions, above. The functions compute “row vector-times-matrix”,
not “matrix-times-column vector” results. Textbooks often use matrix-times-column vector notation. Converting this to row
vector-times-matrix notation requires transposing all matrices and swapping the left and right operands of all multiplications. For
example:

,

987

654

321

















=A ,

444

333

222

















=B ,

3

2

1

















=x xABy ⋅⋅=

In CTL, this would be expressed as follows:

41

float A[3][3] = {{1, 4, 7},
 {2, 5, 8},
 {3, 6, 9}};

float B[3][3] = {{2, 3, 4},
 {2, 3, 4},
 {2, 3, 4}};

float x[3] = {1, 2, 3};

float y[3] = mult_f3_f33 (x, mult_f33_f33 (A, B));

Color conversions in textbooks are sometimes defined in terms of 3×4 or 4×3 matrices. The CTL standard library does not
directly support a separate 4×3 matrix type. Any 4×3 matrix can be represented as a 4×4 matrix by adding a fourth column with
the values





















1

0

0

0

.

3×4 matrices must be transposed before adding the fourth column.

For example, the matrices





















=

121110

987

654

321

1C and
















=

12963

11852

10741

2C

can both be represented in CTL as the same 4×4 matrix:

float C[4][4] = {{ 1, 2, 3, 0},
 { 4, 5, 6, 0},
 { 7, 8, 9, 0},
 {10, 11, 12, 1}};

5.7.5 Lookup Tables and Scattered Data Interpolation

float lookup1D (float table[], float pMin, float pMax, float p);

Function lookup1D() performs a one-dimensional table lookup with linear interpolation.

lookup1D() returns f(p), where f is a piece-wise linear function. For pMin ≤ p < pMax, f(p) is equal to

table[i] * (1-s) + table[i+1] * s

where

t = (p – pMin) / (pMax – pMin) * (table.size-1)
i = floor (t)
s = t – i

For p < pMin and p ≥ pMax, f(p) is equal to table[0] and table[table.size-1] respectively.

float lookupCubic1D (float table[], float pMin, float pMax, float p);

Function lookupCubic1D() performs a one-dimensional table lookup with cubic Hermite spline interpolation.

lookupCubic1D() returns f(p), where f is a C1-continuous piece-wise cubic function that interpolates

table[0] … table[table.size-1]. For pMin ≤ p < pMax, f(p) is equal to

42

table[i] * (2 * s*s*s – 3 * s*s + 1) +
m0 * (s*s*s – 2 * s*s + s) +
table[i+1] * (-2 * s*s*s + 3 * s*s2) +
m1 * (s*s*s – s*s)

where

t = (p – pMin) / (pMax – pMin) * (table.size-1)
i = floor (t)
s = t – i

m0 = (table[i+1] – table[i-1]) / 2 for i > 0

m0 = (3 * table[i+1] – table[i] – m1 for i = 0

m1 = (table[i+2] – table[i]) / 2 for i < table.size–2

m1 = (3 * table[i+1] – table[i] – m0 for i = table.size-2

For p < pMin and p ≥ pMax, f(p) is equal to table[0] and table[table.size-1] respectively.

float interpolate1D (float table[][2], float p);

Given a set of points, (table[i][0], table[i][1]), with 0 ≤ i ≤ table.size-1 and

table[i][0] < table[i+1][0], function interpolate1D() first constructs a piecewise linear function, f,

that interpolates the points. interpolate1D() then returns f(p).

For table[i][0] ≤ p < table[i+1][1], f(p) is equal to

table[i][1] * (1-s) + table[i+1][1] * s

where

s = (p - table[i][0]) / (table[i+1][0] - table[i][0])

For p < table[0][0] and p ≥ table[table.size-1][0], f(p) is equal to table[0][1] and

table[table.size-1][1] respectively.

If table[i][0] ≥ table[i+1][0] for some i, then f(p) is undefined.

float interpolateCubic1D (float table[][2], float p);

Given a set of points, (table[i][0], table[i][1]), with 0 ≤ i ≤ table.size-1 and

table[i][0] < table[i+1][0], function interpolateCubic1D() first constructs a cubic Hermite

spline, f, that interpolates the points. interpolateCubic1D() then returns f(p).

For table[i][0] ≤ p < table[i+1][1], f(p) is equal to

table[i] * (2 * s*s*s - 3 * s*s + 1) +
m0 * (s*s*s - 2 * s*s + s) +
table[i+1] * (-2 * s*s*s + 3 * s*s) +
m1 * (s*s*s - s*s)

where

s = (p - table[i][0]) / (table[i+1][0] - table[i][0])

dx0 = (table[i][0] - table[i-1][0])
dx1 = (table[i+1][0] - table[i][0])
dx2 = (table[i+2][0] - table[i+1][0])

dy0 = (table[i][1] - table[i-1][1])
dy1 = (table[i+1][1] - table[i][1])
dy2 = (table[i+2][1] - table[i+1][1]

m0 = (dy1 + dx1 * dy0 / dx0) / 2 for i > 0

m0 = (3 * dy1 - m1) / 2 for i = 0

43

m1 = (dy1 + dx1 * dy2 / dx2) / 2 for i < table.size-2

m1 = (3 * dy1 - m0) / 2 for i = table.size–2

For p < pMin and p ≥ pMax, f(p) is equal to table[0] and table[table.size-1] respectively.

If table[i][0] ≥ table[i+1][0] for some i, then f(p) is undefined.

float[3] lookup3D_f3
 (float table[][][][3],
 float pMin[3],
 float pMax[3],
 float p[3]);

Function lookup3D_f3() performs a three-dimensional table lookup with trilinear interpolation:

lookup3D_f3() returns f(p), where f is a function that maps 3D points to 3D points. The function is defined as

follows:

table, pMin and pMax define an axis-aligned 3D grid of (iMax+1) by (jMax+1) by (kMax+1) evenly spaced

points, where

iMax = table.size - 1
jMax = table[0].size - 1
kMax = table[0][0].size – 1

and grid point (i,j,k) is at location

(pMin[0] + (pMax[0]-pMin[0]) * i/iMax,
 pMin[1] + (pMax[1]-pMin[1]) * j/jMax,
 pMin[2] + (pMax[2]-pMin[2]) * k/kMax)

If a point, p, is at the same location as grid point (i,j,k), then f(p) is equal to table[i][j][k]. If p is not at

a grid point location, then f(p) is trilinearly interpolated from the eight nearest grid points:

f(p) =
 ((table[i][j][k] * (1-si) + table[i+1][j][k] * si) * (1-sj) +
 (table[i][j+1][k] * (1-si) + table[i+1][j+1][k] * si) * sj) * (1-sk) +
 ((table[i][j][k+1] * (1-si) + table[i+1][j][k+1] * si) * (1-sj) +
 (table[i][j+1][k+1] * (1-si) + table[i+1][j+1][k+1] * si) * sj) * sk

where

ti = (p[0] – pMin[0]) / (pMax[0] – pMin[0]) * iMax
i = floor (ti)
si = ti - i

tj = (p[1] – pMin[1]) / (pMax[1] – pMin[1]) * jMax
j = floor (tj)
sj = tj - j

tk = (p[2] – pMin[2]) / (pMax[2] – pMin[2]) * kMax
k = floor (tk)
sk = tk – k

If p is outside the grid, then f(p) is equal to f(q), where point q is at position

(max (pMin[0], min (pMax[0], p[0])),
 max (pMin[1], min (pMax[1], p[1])),
 max (pMin[2], min (pMax[2], p[2])))

44

void lookup3D_f
 (float table[][][][3],
 float pMin[3],
 float pMax[3],
 float p0, float p1, float p2,
 output float q0, output float q1, output float q2);

void lookup3D_h
 (float table[][][][3],
 float pMin[3],
 float pMax[3],
 half p0, half p1, half p2,
 output half q0, output half q1, output half q2);

Functions lookup3D_f() and lookup3D_h() are variants of lookup3D_f3() that are more convenient to call

when the three components of point p happen to reside in three float or half variables rather than in a three-

element array. lookup3D_f() and lookup3D_h() are both equivalent to the following code:

float p[3] = {p0, p1, p2};
float q[3] = lookup3D_f3 (table, pMin, pMax, p);
q0 = q[0];
q1 = q[1];
q2 = q[2];

void scatteredDataToGrid3D (float data[][2][3],
 float pMin[3],
 float pMax[3],

 output float grid[][][][3]);

Function scatteredDataToGrid3D() performs three-dimensional scattered data interpolation and builds a table

that can be used as an input for the three-dimensional table-lookup functions listed above.

data is an array of pairs of 3D points. Each pair, data[i], represents a sample of an unknown function: the value of

the function at data[i][0] is data[i][1].

scatteredDataToGrid3D() approximates this unknown function by interpolating the samples stored in data.

First, a smooth function, f, is constructed such that f(data[i][0]) is equal to data[i][1] for each i with i≤0

and i<data.size. Function f is then sampled at regular intervals, and the result is stored in array grid:

int iMax = grid.size - 1;
int jMax = grid[0].size - 1;
int kMax = grid[0][0].size - 1;

for (i = 0; i <= iMax; i = i+1)
 for (j = 0; j <= jMax; j = j+1)
 for (k = 0; k <= kMax; k = k+1)
 {
 float p[3] =
 {
 pMin[0] + (pMax[0] - pmin[0]) * i/iMax;
 pMin[1] + (pMax[1] - pmin[1]) * j/jMax;
 pMin[2] + (pMax[2] - pmin[2]) * k/kMax;
 };

 grid[i][j][k] = f(p);
 }
 }
}

45

5.7.6 Conversions between Standard Color Spaces

 struct Chromaticities
 {
 float red[2];
 float green[2];
 float blue[2];
 float white[2];
 };

float[4][4] RGBtoXYZ (Chromaticities c, float Y);
float[4][4] XYZtoRGB (Chromaticities c, float Y);

Functions RGBtoXYZ() and XYZtoRGB() compute matrices for converting between the CIE 1931 XYZ color

space and an RGB color space with arbitrary primaries and an arbitrary white point.

If c defines the CIE xy coordinates of the primaries and the white point of the RGB space, and Y defines the luminance

of the RGB triple (1,1,1), or “white”, then RGBtoXYZ(c,Y) returns a matrix, M, so that multiplying an RGB value by

M produces an equivalent XYZ value.

XYZtoRGB(c,Y) returns 1−M . Multiplying an XYZ value by 1−M produces an equivalent RGB value.

The following example converts the RGB value (0.1, 1.2, 0.4) to CIE XYZ. The primaries and white point of the RGB
space match Recommendation ITU-R BT.709-5:

const Chromaticities c =
{
 {0.6400, 0.3300}, // red x and y
 {0.3000, 0.6000}, // green x and y
 {0.1500, 0.0600}, // blue x and y
 {0.3127, 0.3290} // white x and y
};

const float Y = 100.0; // 100 nits

float M[4][4] = RGBtoXYZ (c, Y);

float RGB[3] = {0.1, 1.2, 0.4};
float XYZ[3] = mult_f3_f44 (RGB, M);

Note: The reason why RGBtoXYZ() and XYZtoRGB() return matrices instead of directly converting between RGB and
XYZ values is speed. A vector-times-matrix multiplication is faster than computing the matrix. The matrix can be built
once, and then re-used many times.

float[3] XYZtoLuv (float XYZ[3], float XYZn[3]);
float[3] LuvtoXYZ (float Luv[3], float XYZn[3]);

Conversion between CIE XYZ and CIE L*u*v*:

Given an XYZ tristimulus, XYZ, and a white stimulus, XYZn, XYZtoLuv(XYZ,XYZn) returns an L*u*v* triple that is

equivalent to XYZ.

Given an L*u*v* triple, Luv, and a white stimulus, XYZn, LuvtoXYZ(Luv,XYZn) returns an XYZ tristimulus that is

equivalent to Luv.

float[3] XYZtoLab (float XYZ[3], float XYZn[3]);
float[3] LabtoXYZ (float Lab[3], float XYZn[3]);

Conversion between CIE XYZ and CIE L*a*b*:

Given an XYZ tristimulus, XYZ, and a white stimulus, XYZn, XYZtoLab(XYZ,XYZn) returns an L*a*b* triple that is

equivalent to XYZ.

Given an L*a*b* triple, Lab, and a white stimulus, XYZn, LabtoXYZ(Lab,XYZn) returns an XYZ tristimulus that is

equivalent to Lab.

46

5.7.7 Assertion

void assert (bool assumption);

If assumption is true, then assert() does nothing and returns. If assumption is false, then assert()

aborts the calling program. (“Abort” means that the CTL program terminates immediately, and the CTL interpreter

throws a C++ exception of type Iex::LogicExc.)

The purpose of assert() is to make a programmer's assumptions about his or her program explicit, and to detect

situations where those assumptions are violated.

Example:

float
mySqrt (float x)
{
 assert (x >= 0);

 if (x == 0)
 return 0;

 float a = 1;
 float b = x;

 while (b < 1-FLT_EPSILON || b > 1+FLT_EPSILON)
 {
 a = 0.5 * (a + x/a);
 b = x / (a*a);
 }

 return a;
}

If mySqrt(x) is called with 0≥x , the while loop quickly converges on x , and the function returns. If x is less

than zero then x is undefined and the loop does not terminate. The call to assert() at the start of mySqrt()

states explicitly that x must not be less than zero; if mySqrt(x) is called with x less than zero, then the calling

program is aborted.

47

5.8 Complete Grammar

module:

 ctlVersionStatement importList moduleBody

ctlVersionStatement:

 Ø

 ctlversion intLiteral ;

importList:

 Ø

 importStatement importList

importStatement:

 import stringLiteral ;

moduleBody:

 funcConstStructList

 namespace name { funcConstStructList }

funcConstStructList:

 Ø

 funcConstOrStruct funcConstStructList

funcConstOrStruct:

 function

 constantDefinition

 structDefinition

function:

 returnType name (parameterList) compoundStatement

parameterList:

 Ø

 nonEmptyParameterList

nonEmptyParameterList:

 parameter

 nonEmptyParameterList , parameter

parameter:

 input inputParameter
 inputParameter

 output outputParameter

inputParameter:

 varyingHint baseType name arraySize

 varyingHint baseType name arraySize = compoundInitializer

 varyingHint baseType name arraySize = expression

outputParameter:

 varyingHint baseType name arraySize

compoundStatement:

48

 { statementList }

statementList:

 Ø

 statement statementList

statement:

 variableDefinition

 structDefinition

 assignment

 expressionStatement

 compoundStatement

 forStatement

 ifStatement

 nullStatement

 printStatemen

 returnStatement

 whileStatement

constantDefinition:

 const baseType name arraySize = expression ;

 const baseType name arraySize = compoundInitializer ;

variableDefinition:

 baseType name arraySize ;

 constness baseType name arraySize = expression ;

 constness baseType name arraySize = compoundInitializer ;

 constness baseType name arraySize , expression ;

assignment:

 simpleAssignment ;

simpleAssigment:

 expression = expression

expressionStatement:

 simpleExpressionStatement ;

simpleExpressionStatement:

 expression

forStatement:

 for (forInitStatement ; expression ; forUpdateStatement) statement

forInitStatement:

 variableDefinition

 assignment

 expressionStatement

forUpdateStatement:

 simpleAssignment

 simpleExpressionStatement

ifStatement:

 if (expression) statement

 if (expression) statement else statement

49

returnStatement:
 return ;

 return expression ;

printStatement:

 print (exprList) ;

nullStatement:
 ;

whileStatement:

 while (expression) statement

expression:

 orExpression

orExpression:

 andExpression

 orExpression || andExpression

andExpression:

 bitOrExpression

 andExpression && bitOrExpression

bitOrExpression:

 bitXorExpression

 bitOrExpression | bitXorExpression

bitXorExpression:

 bitAndExpression

 bitXorExpression ^ bitAndExpression

bitAndExpression:

 equalityExpression

 bitAndExpression & equalityExpression

equalityExpression:

 relationalExpression

 equalityExpression == relationalExpression

 equalityExpression != relationalExpression

relationalExpression:

 shiftExpression

 relationalExpression < shiftExpression

 relationalExpression > shiftExpression

 relationalExpression <= shiftExpression

 relationalExpression >= shiftExpression

shiftExpression:

 additiveExpression

 shiftExpression << additiveExpression

 shiftExpression >> additiveExpression

additiveExpression:

 multiplicativeExpression

 additiveExpression + multiplicativeExpression

50

 additiveExpression - multiplicativeExpression

multiplicativeExpression:

 unaryExpression

 multiplicativeExpression * unaryExpression

 multiplicativeExpression / unaryExpression

 multiplicativeExpression % unaryExpression

unaryExpression:

 primaryExpression

 - primaryExpression

 ~ primaryExpression

 ! primaryExpression

primaryExpression:

 true

 false

 intLiteral

 floatLiteral

 halfLiteral

 stringLiteral

 (expression)
 scopedName memberArrayExpression

 scopedName (exprList)

memberArrayExpression:

 Ø

 . name memberArrayExpression
 . size

 [expression] memberArrayExpression

initializer:

 { exprList }

scopedName:

 name

 name :: name

exprList:

 Ø

 nonEmptyExprList

nonEmptyExprList:

 expression

 nonEmptyExprList , expression

returnType:

 varyingHint void

 varyingHint baseType arraySize

constness:

 Ø
 const

baseType:
 bool

51

 int
 unsigned
 unsigned int
 half
 float
 baseStructName

compoundInitializer:

 { initializerList }

 { initializerList , compoundInitializer }

initializerList:

 intializer

 initializerList , initializer

varyingHint:

 Ø
 varying
 uniform

arraySize:

 Ø
 []

 [expression]

structDefinition:

 struct name { structMemberDefinitions } ;

structMemberDefinitions

 Ø

 baseType name arraySize ; structMemberDefinitions

52

Appendix A Simplified API for OpenEXR

The CTL interpreter's C++ interface for passing function call arguments to and from CTL is fairly complex, mostly because the

interface must be able to accommodate cases such as varying structures and arrays, as well as limits on the number of pixels
that the interpreter back end can handle simultaneously. Given a specific application, it is usually possible to simplify the
argument passing mechanism by writing an abstraction layer on top of the basic interface.

The sample source code mentioned in Appendix C includes an application-specific interface for images that are stored in the

OpenEXR file format. This OpenEXR interface is not part of the CTL interpreter, and the interpreter does not depend on the
OpenEXR file format. OpenEXR is a high-dynamic-range image file format that is frequently employed by the visual effects
industry. (For more information on OpenEXR, see http://www.openexr.com/)

A.1 C++ Interface

The OpenEXR interface consists of a single function, called applyTransforms(). The function applies a series of CTL

functions to the pixels in an OpenEXR frame buffer and places the results in another OpenEXR frame buffer. Two OpenEXR

Header objects supply uniform input data to the CTL functions. Uniform output data are stored in a third Header object.

Function applyTransforms() has nine parameters:

interpreter The instance of the CTL interpreter that will execute the color transformation functions.

transformNames A list of CTL function names. The corresponding CTL functions will be called in the order

in which their names appear in this list.

transformWindow The region in the input and output frame buffers that contains the pixel data that will be

read and written by the CTL functions. Typically this will be the same as the input image's
data window.

envHeader An OpenEXR header that contains information about "the environment", for example,

display primary chromaticities and white point.

inHeader An OpenEXR header that describes the pixels in the input frame buffer. This will typically

be the header of the image file that is the source of the pixels in the input frame buffer.

inFb The input frame buffer; contains the pixels that are to be processed.

outHeader An OpenEXR header where the values of the non-varying output parameters of the CTL
functions will be stored.

outFb The output frame buffer; holds the pixels output by the CTL functions.

numThreads Number of parallel threads that will be used to execute the CTL functions.

The applyTransforms() function first loads the CTL modules that contain the functions listed in transformNames.

Each function is assumed to live in a module with the same name as the function. If transformNames contains a function

foo(), then module foo, in file foo.ctl, is loaded.

applyTransforms() then calls each of the CTL functions listed in transformNames. The values for the functions' input

parameters come from the output arguments of the previous function in the list, from envHeader, from inHeader, or from

inFb. The values of some of the functions' output parameters are stored in outHeader or outFb.

A.2 Matching CTL Parameters, Image Channels and Header Attributes

Before each CTL function is called, it must be supplied with values for its parameters. For an input parameter with name p, the
value is found as follows:

 if p is varying

 if the previous function has an output parameter with name p

 use previous function's output parameter

 else if the previous function has an output parameter whose name is p concatenated with “Out”

 use previous function's output parameter

 else if inFb contains a slice with name p

 use inFb slice

53

 else if input parameter p has a default value

 use default value

 else

 error (throw Iex::ArgExc)
 else (p is uniform)

 if the previous function has an output parameter with name p

 use previous function's output parameter

 else if the previous function has an output parameter whose name is p concatenated with “Out”

 use previous function's output parameter

 else if inHeader contains an attribute with name p

 use inHeader attribute

 else if envHeader contains an attribute with name p

 use envHeader attribute
 else if input parameter p has a default value

 use default value

 else

 error (throw Iex::ArgExc)

In all cases, the type of the value used must match the type of the input parameter. A type mismatch is an error; in this case

applyTransforms() throws an Iex::TypeExc exception.

After each CTL function returns, the values of its output parameters may be copied into outHeader or outFb, in addition to

potentially being used as inputs to the next CTL function. An output parameter with name p is handled as follows:

 if p is varying

 if outFb contains a slice with name p

 copy the value into the outFb slice

 else if name p ends in “Out” and outFb contains a slice whose name is p, except without the trailing “Out”

 copy the value into the outFb slice

 else (p is uniform)

 if outHeader contains an attribute with name p

 copy the value into the outHeader attribute

 else if name p ends in “Out” and outHeader contains an attribute whose name is p, except without the trailing “Out”

 copy the value into the outHeader attribute

The type of the output parameter must match the type of the frame buffer slice or header attribute. A type mismatch is an error;

in this case applyTransforms() throws an Iex::TypeExc exception. applyTransforms() does not add attributes

to outHeader or slices to the outFb. Only existing attributes or slices are used.

Example: inFb has two slices, A and C, and outFb has three slices, AOut, B and C. transformNames lists two

transforms, transform1 and transform2, with the following signatures:

void
transform1
 (varying input half A,
 varying output half AOut,
 varying output half B)
{
 ...
}

void
transform2
 (varying input half A,
 varying input half B,
 varying input half C,
 varying output half AOut,
 varying output half BOut,
 varying output half COut)
{

54

 ...
}

In this case, frame buffer slices and transform parameters are connected as follows:

Source Destination

inFb, slice A transform1, parameter A

inFB, slice C transform2, parameter C

transform1, parameter AOut transform2, parameter A

transform1, parameter B transform2, parameter B

transform2, parameter AOut outFb, slice AOut

transform2, parameter BOut outFb, slice B

transform2, parameter COut outFb, slice C

A.3 Translation between CTL Types, Channel Types and Attribute Types

Function applyTransforms() translates a fixed set of OpenEXR attribute and channel types to and from CTL, as shown in

the table below. Parameter values of arbitrary type can be passed from one transform to the next, but only parameter values of

the types listed in the table can be read from inHeader, envHeader or inFb, or stored in outHeader or outFb.

OpenEXR channel type CTL function parameter type

HALF varying half

FLOAT varying float

UINT varying unsigned int

OpenEXR attribute type CTL function parameter type

Box2iAttribute uniform Box2i, where Box2i is defined as

struct Box2i
{
 int min[2];
 int max[2];
};

Box2fAttribute uniform Box2f, where Box2f is defined as

struct Box2f
{
 float min[2];
 float max[2];
};

ChromaticitiesAttribute uniform Chromaticities, where Chromaticities
is defined as

struct Chromaticities
{
 float red[2];
 float green[2];
 float blue[2];
 float white[2];
};

55

OpenEXR attribute type CTL function parameter type

DoubleAttribute uniform float

FloatAttribute uniform float

IntAttribute uniform int

M33fAttribute uniform float[3][3]

M44fAttribute uniform float[4][4]

V2iAttribute uniform int[2]

V3fAttribute uniform float[3]

V3iAttribute uniform int[3]

56

Appendix B Source Code

The C++ source code for the reference implementation of the CTL interpreter can be downloaded from

 http://sourceforge.net/projects/ampasctl

The CTL interpreter depends on a set of low-level utility libraries, called IlmBase, which can be downloaded from

 http://savannah.nongnu.org/projects/openexr

57

Appendix C Sample Code and Utilities

The OpenEXR_Viewers package, available at

 http://savannah.nongnu.org/projects/openexr

includes source code for OpenEXR still image and moving image viewers, both with CTL support. In addition to the packages

listed above, building the image viewers requires the OpenEXR and OpenEXR_CTL, packages, which are available at

 http://savannah.nongnu.org/projects/openexr

and

 http://sourceforge.net/projects/ampasctl

The source code packages mentioned contain instructions for building and installing the respective libraries and executables.

