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1 Introduction 

1.1 Motivation 

Digital color management requires translating digital images among different representations or color spaces.  For example, the 

pixels in an image may encode the colors that should be seen when the image is displayed on a video monitor.  Printing this 
image on paper or recording it on motion picture film requires transforming the pixels to an appropriate representation: Video, 

inks on paper and film all have different color gamuts and dynamic ranges.  Color mixing is additive for video, but subtractive for 
inks and film.  Video and film typically use three color channels, while four or more inks are used for printing on paper.  A color 

management system must transform each pixel in the original image to corresponding amounts of ink or film density values. 

The details of how each pixel is transformed can be fairly complex, and they are often subject to artistic decisions.  When 

images are exchanged between different people or companies, it is often desirable to exchange exact descriptions of 
appropriate color transforms along with the digital image files.  Two companies whose offices are in different geographical 

locations may each have a copy of the same digital image file.  When one of the companies prints the image on paper, they 
want to be sure that they get the same result as the other company.  In order to achieve identical results, the companies must 

agree on details of the printing process (for example, inks and paper), and they must agree on the transform that converts pixels 
in the file into amounts of ink on paper.  Of course, this requires a description of the transform. 

1.2 What CTL Is 

The Color Transformation Language, or CTL, is a small programming language that has been designed to serve as a building 
block for digital color management systems.  CTL allows users to describe color transforms in a concise and unambiguous way 
by expressing them as programs.  Any digital color management system that supports CTL includes a CTL "interpreter", a 
software program that performs CTL-described operations on pixels that make up an image.  In order to apply a given transform 

to an image, the color management system instructs the interpreter to load and run the CTL program that describes the 
transform.  The original and the transformed image constitute the CTL program's input and output.   

Color transforms can be shared by distributing CTL programs.  Two parties with the same CTL program can apply the same 
transform to an image.   

In addition to the original image, a CTL program can have input parameters whose settings affect how the input image will be 
transformed.  For example, a transform may have an "exposure" parameter, such that changing the exposure makes the image 
brighter or darker.  In order to guarantee identical results, parties that have agreed to use a particular transform must also agree 
on the settings for the transform's parameters. 

General-purpose programming languages such as C, C++ or Python could of course be used to describe color transforms, but 
code written in those languages is not a suitable format for transform interchange.  Some languages require the recipient to 
explicitly compile and link a program’s source code before the program can be executed.  Code must be carefully written in 
order to make it portable across different operating systems.  If code is executed inside a larger application, bugs can cause the 

application to malfunction.  In addition, with most general-purpose programming languages, reliable protection from viruses and 
Trojan horses is very difficult to achieve. 

A domain-specific programming language such as CTL can be designed to allow only the kinds of operations that are needed to 
describe color transforms.  This improves the portability of programs, protects users against application software crashes and 

malicious code, and permits efficient interpreter implementations. 

1.3 What CTL Is Not  

A CTL interpreter is not a color management system; it is merely a software component that can be used as a part of such a 
system.  The interpreter transforms images by executing CTL programs, but only when invoked by the rest of the system.  The 

interpreter does not decide which programs to run and when, or what the settings for a transform's parameters should be. 

CTL is a mechanism that can be used to implement any number of color management policies, but it does not by itself define a 
particular policy.   

Also, CTL is not a general-purpose image processing language.  CTL programs are restricted to performing color space 

transforms or other single-pixel operations.  It is not possible to express operations such as convolving an image with a filter 
kernel, or computing the sum of all pixels in an image. 
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1.4 This Document 

This document describes the CTL language and the reference implementation of the CTL interpreter.  Section 2 provides an 

overview of the language.  It should give the reader enough background to start writing CTL programs and understand their use.  
Section 3 describes the reference implementation of the interpreter for the language for readers who are integrating the 

reference CTL interpreter into their C++ applications.  Section 4 provides more information on the implementation and Section 5 
provides a programming reference guide for CTL. 

This document assumes that the reader is familiar with the C and C++ programming languages and with basic digital imaging 
concepts. 

The reference implementation is designed so that it is easy to interpret CTL properly using the provided parser and framework in 
combination with a custom program execution engine.  Implementers who choose to re-implement the entire interpreter should 

produce the same behavior and results as the reference interpreter.  In the event that discrepancies are found between the 
language reference in Section 6 and the reference implementation, the reference implementation should be considered the 

specification. 
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2 Overview of CTL 

In order to make CTL programs look familiar to people who are used to programming in C or C++, the syntax of CTL was 
deliberately made similar to C.   However, there are significant differences.  Below, the main features of CTL are introduced by 
showing a number of code samples.   

2.1 Basic Concepts 

The first example is a CTL transform that adjusts the overall brightness of an image according to an "exposure" parameter: 

void 
adjustExposure 
 (output varying half rOut, 
  output varying half gOut, 
  output varying half bOut, 
  input varying half r, 
  input varying half g, 
  input varying half b, 
  input uniform float e = 0) 
{ 
    float f = pow (2, e); 
    rOut = r * f; 
    gOut = g * f; 
    bOut = b * f; 
} 
 

In CTL, a transform is expressed as a function that describes the operations that must be performed on an individual pixel.  In 
order to apply the transform to an image, the CTL interpreter calls the function once for each pixel. 

The adjustExposure() function expects as inputs an image with three channels, r, g, and b, and an exposure value, e.  

The function multiplies all pixels by 2
e
, thus making the image brighter or darker.  (If the data in the pixels represent linear scene 

luminance values, then this operation is equivalent to changing the aperture of the iris on the camera's lens by e f-stops.)  The 

result is a new image with three channels, rOut, gOut and bOut. 

Most CTL functions have parameters.  Input parameters supply input data, and results are returned via output parameters or via 
the function's return value. 

Function adjustExposure() has four input parameters, r, g, b and e.  The parameters are marked with the keyword 

input.  The varying keyword indicates that the value of r, g and b varies from pixel to pixel.  In other words, r, g and b 

are image channels.  The keyword uniform indicates that the fourth parameter, e, is the same for all pixels. 

In addition to its input parameters, adjustExposure() has three output parameters, rOut, bOut and gOut, marked with 

the keyword output.  The varying keyword indicates that their values may vary from pixel to pixel; rOut, bOut and gOut 

are the channels of the function's output image. 

The return type of adjustExposure() is void.  As in C, a void return type indicates that the function does not return a 

value; all results are delivered via output parameters. 

All function parameters and variables are typed.  Here, parameter e as well as variable f in the function's body are of type 

float; that is, the values of e and f are 32-bit floating-point numbers.  The other six parameters are of type half; their 

values are "half-precision" or 16-bit floating-point numbers. 

In addition to floating-point numbers, CTL supports Boolean values, signed and unsigned integers, structures and arrays.  
Those data types are described below. 

Each input parameter may optionally have a default value.  When a function is called and the caller does not specify a value for 

a given parameter, then the called function uses the default value instead.  The caller of adjustExposure() is allowed to 

omit the value of e.  In this case adjustExposure() assumes that e is zero.  Parameters r, g and b have no default 

values; the caller must explicitly specify their values. 

The body of function adjustExposure(), between the curly braces, { and }, describes what the function does:  first, built-

in function pow() is called to compute 2
e
, and the result is assigned to variable f.  Then r, g, and b are multiplied by f, and 

the result is assigned to rOut, gOut and bOut, respectively. 
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All CTL functions operate on one pixel at a time; there is no explicit loop over the pixels in an image.  When the CTL interpreter 

applies the transform that is described by function adjustExposure() to an image, it calls the function once for each pixel, 

with the r, g and b parameters set equal to the pixel's r, g and b values.   

The order in which the per-pixel calls to a CTL function are executed is not observable from the point of view of the function.  

Calls may run one after another or multiple calls may run concurrently.  Concurrent calls may really run simultaneously in 
multiple threads, or they may be interleaved in a single thread.   

Note that a CTL function sees only a single pixel at a time.  The function cannot access neighboring pixels.  It cannot determine 
the size of the overall image or the location of the current pixel within the image.  Limiting the view of the world to a single pixel 

does not restrict the implementation of pure color space transforms, where what happens to a given pixel does not depend on 
any other pixels.  On the other hand, the single-pixel world view makes it impossible to express any operations that depend on 

neighboring pixels or on the current pixel's location, for example convolving an image with a blur kernel or generating color 
gradients. 

Giving a CTL program access to only a single pixel at a time guarantees that each output pixel is strictly a function of the 
corresponding input pixel and data passed from the application to the CTL program.  Neither state accumulated during previous 

program executions nor additional input pixels can influence the CTL program’s output.  This allows CTL interpreters to optimize 
execution in ways that would not be possible with a more general programming model. 

2.2 Input and Output, Varying and Uniform 

The input and uniform keywords in the declaration of function parameters are optional.  If neither input nor output is 

specified for a parameter, then the parameter is an input parameter.  If neither varying nor uniform is specified, then the 

parameter is assumed to be uniform.  Function adjustExposure(), above, could have been declared like this: 

void 
adjustExposure 
    (output varying half rOut, 
     output varying half gOut, 
     output varying half bOut, 
     varying half r, 
     varying half g, 
     varying half b, 
     float e = 0) 
{ 
    ... 
} 
 

Why are the varying and uniform keywords necessary?  Since each function operates on one pixel at a time, the body of a 

function does not depend at all on whether the function's parameters vary between pixels or not.  A function such as 

float 
square (float x) 
{ 
    return x * x; 
} 
 

should work exactly the same way for uniform values as for varying ones.   

varying and uniform are hints to the color management system that calls CTL functions.  The varying keyword tells the 

system that the corresponding function parameter is an image channel; the uniform  keyword means that the parameter is 

something else, for example an "attribute" or "tag" from an image file's header. 

The CTL interpreter makes the uniform and varying hints available to the color management system, but it ignores those 

hints otherwise.  When the square() function, above, is called, it does not matter whether the value of x varies from pixel to 

pixel.  Only CTL functions that are meant to be called directly by the color management system must specify which parameters 
are uniform and which are varying.  Functions that will only be called by other CTL functions don't need to do this. 

2.3 Data Types 

CTL has the following six fundamental data types: 

bool Boolean, can hold the value true or false 
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bool Boolean, can hold the value true or false 

int signed 32-bit integer 

unsigned int unsigned 32-bit integer 

float single-precision (32-bit) floating-point 

half half-precision (16-bit) floating-point 

void indicates that a function does not return a value 

 

CTL supports two kinds of aggregate data types: arrays and structures.  The elements of arrays and the members of structures 

can be fundamental or aggregate types.  Structures and arrays can be nested to form arrays of structures, structures containing 
arrays and other structures, or multidimensional arrays.  For example: 

bool x[3];  // an array of 3 Booleans 
 
int y[3][4][2]; // an array of 3 arrays of 4 arrays of 2 integers, 
     // in other words, a three-dimensional array 
 
struct S   // a simple structure 
{ 
    int x; 
    int y; 
}; 
 
struct T   // a nested structure, containing an integer 
{     // and a two-dimensional array of S 
    int i; 
    S   s[4][7]; 
}; 
 

Structures and arrays can be initialized by listing the values of their members or elements between curly braces: 

float f[3] = {0.0, sqrt(2), 2 * sqrt(2)}; 
S s = {3, 4}; 
S t[2] = {{1, 2}, {3+4, 6/3}}; 
     

Except for function parameters, all array sizes are static.  The CTL interpreter must be able to determine the size of an array at 

"compile time", when it parses the CTL source code.  CTL does not support arrays whose size is determined at run-time. 

The following array declarations are valid: 

void 
f () 
{ 
    const int n = 2; 
    const bool i[n*2] = {true, false, false, true}; 
    const int j[][] = {{1, 2}, {3, 4}, {5, 6}}; 
} 
 

The CTL interpreter can determine the size of array i because it can determine that the value of n*2 is 4 without actually 

calling function f().  Similarly, by counting the values between the curly braces, the interpreter can determine that j is an array 

with 3 by 2 elements.   

However, the following array declaration is not allowed: 

void 
g (int x) 
{ 
    int k[x]; // error: cannot determine size of array k 
} 
 

In order to compute the size of array k, function g() would actually have to be called, and the size of k could be different for 

each call. 
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2.4 Arrays, Static Data, Lookup Tables 

Many color transforms rely on lookup tables.  In CTL, lookup tables can be represented as multi-dimensional arrays, as shown 

in the following example: 

const float lut1D[] = 
{ 
    0.03, 0.05, 0.10, 0.12, 0.15, 
    0.20, 0.50, 1.00, 2.10, 3.30, 
    4.45, 5.20, 5.40, 5.50, 5.50 
}; 
 
const float lut1DMin = 0.0; 
const float lut1DMax = 1.0; 
 
const float lut3D[4][4][4][3] = 
    {{{{.00, .00, .00}, {.11, .00, .00}, {.41, .00, .00}, {.91, .00, .00}}, 
      {{.00, .10, .00}, {.12, .20, .00}, {.42, .31, .00}, {.91, .49, .00}}, 
      ... // 45 lines omitted 
      {{.00, .49, .53}, {.13, .60, .64}, {.43, .71, .75}, {.91, .93, .99}}}}; 
 
const float lut3DMin[3] = {0.00, 0.00, 0.00}; 
const float lut3DMax[3] = {5.50, 5.50, 5.50}; 
 
void 
applyLuts 
  (output varying half rOut, 
   output varying half gOut, 
   output varying half bOut, 
   varying half r, 
   varying half g, 
   varying half b, 
{ 
    half r2 = lookup1D (lut1D, lut1DMin, lut1Dmax, r); 
    half g2 = lookup1D (lut1D, lut1DMin, lut1Dmax, g); 
    half b2 = lookup1D (lut1D, lut1DMin, lut1Dmax, b); 
    lookup3D_h (lut3D, lut3DMin, lut3Dmax, rOut, gOut, bOut, r1, g1, b1); 
} 
 

Function applyLuts() transforms three input values, r, g and b, into three output values, rOut, gOut and bOut, by 

applying a one-dimensional (1D) and a three-dimensional (3D) lookup table.   

The lookup tables, lut1D and lut3D, are represented as two arrays of float; lut1D is one-dimensional and lut3D is 

four-dimensional (lut3D is a 3D table with entries that are 1D arrays).  Both arrays are defined outside of function 

applyLuts().  The arrays are "static"; they are created and initialized once, when the program is loaded, rather than 

repeatedly, every time function applyLuts() is called. 

In CTL, the keyword const must be used to mark all static data as constant.  Constant static data are initialized when the 

program module that defines them is loaded. Static data cannot be modified after initialization.  Non-constant static data are not 

allowed.   

Prohibiting non-constant static data ensures that CTL functions cannot have side effects other than modification of the function's 

output parameters.  This way, independent CTL function calls cannot exchange data via static variables, and the function calls 
can be executed sequentially, interleaved or concurrently, without affecting each call's results. 

Function lookup1D() performs linearly interpolated 1D table lookups.  lookup1D() is built into the CTL interpreter, but an 

equivalent function could also be written in CTL: 

float 
myLookup1D (float lut[], float xMin, float xMax, float x) 
{ 
    unsigned int iMax = lut.size - 1; 
 
    if (x1 > xMin && x < xMax) 
    { 
        float u = (x - xMin) / (xMax - xMin) * iMax; 
        unsigned int i = u; 
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        u = u - i; 
 
        return lut[i] * (1 - u) + lut[i + 1] * u; 
    } 
    else if (x >= xMax) 
    { 
        return lut[iMax]; 
    } 
    else // either x <= xMin or x is a NaN 
    { 
        return lut[0]; 
    } 
} 
 

The function's lookup table parameter, lut, is a “variable-size array”, that is, an array of unspecified size.  The number of 

elements in lut is not known until function myLookup1D() is called, and different callers may pass arrays of different sizes.  

Within myLookup1D(), the size of lut can be queried using the size operator.  The expression 

lut.size 
 

returns the number of elements in the array.   

The 3D table lookup function is also built into the interpreter, but again, an equivalent function could be written in CTL.  Here we 

show only the function's name and parameter list, omitting the function's body: 

void 
myLookup3D 
    (float lut[][][][3], 
     float xMin[3], 
     float xMax[3], 
     float x[3], 
     output float y[3]) 
{ 
    ... 
} 
 

Parameters x, xMin, xMax and y are fixed-size arrays, but the size of the lut parameter is only partially specified: lut is an 

array of r by s by t by 3 elements, where r, s and t are not known until myLookup3D() is called.  Again, the size of lut 

can be queried using the size operator: 

unsigned int r = lut.size; 
unsigned int s = lut[0].size; 
unsigned int t = lut[0][0].size; 
unsigned int u = lut[0][0][0].size;  // returns 3 
 

The table can be indexed with three or four indices, yielding either a 1D array or an individual floating-point number.  For 
example: 

float a[3] = lut[i][j][k]; 
float b = lut[i][j][k][h]; 

2.5 Scattered Data Interpolation 

Using 3D lookup tables requires that the data in the table are known at 3D locations that form a regular grid.  Tables are often 

generated from measured data where the measured points may not form a regular grid.  In this case we must use scattered 
data interpolation to generate a regular grid from the measurements.  We can do this by calling the built-in function 

scatteredDataToGrid3D().  Written in CTL, the signature of this function looks like this: 

void 
scatteredDataToGrid3D 
    (float scatteredData[][2][3], 
     float gridMin[3], 
     float gridMax[3], 
     output float grid[][][][3]) 
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Function parameter scatteredData is an array of pairs of 3D points.  The first element in each pair represents a location in 

3D space where a 3D value, represented by the second element in the pair, was measured.  Function 

scatteredDataToGrid3D() constructs a smooth function that interpolates the measured data, and then samples this 

function at regular intervals to form a 3D grid, grid.  gridMin and gridMax indicate the grid's bounding box.  To generate 

a static 3D grid from a scattered data set, we can call scatteredDataToGrid3D() like this: 

const float data[][2][3] = 
{ 
    {{0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}, 
    {{0.0, 0.2, 0.0}, {0.1, 0.3, 0.1}}, 
    ... 
    {{2.0, 2.0, 2.0}, {2.1, 2.1, 2.2}} 
}; 
 
const float gridMin[3] = {0.0, 0.0, 0.0}; 
const float gridMax[3] = {2.0, 3.0, 4.0}; 
 
const float grid[16][16][16][3], 
    scatteredDataToGrid3D (data, gridMin, gridMax, grid); 
 

Note the syntax for the initialization of array grid.  The comma after the declaration of grid indicates that the following 

expression initializes the array.  Within the initializing expression, the array is treated as variable, even though it has been 

declared const.  This allows us to pass the array to function scatteredDataToGrid3D() as an output parameter. 

The unusual initialization syntax is required because CTL does not support variable-size arrays except in function parameters.  

We could write a version of scatteredDataToGrid3D() that returns a grid with 16 by 16 by 16 points, but that function 

could not be used to initialize, for example, a grid with 64 by 64 by 64 points.  In order to allow a function to initialize a grid of 
arbitrary size, the grid must be a variable-size array output parameter. 

2.6 Standard Library 

CTL comes with a standard library of built-in functions.  Most of these functions could be written in CTL, but of course writing 
color transforms is easier if commonly used functions already exist.  The standard library includes: 

• elementary functions, such as sqrt(), pow(), log(), sin(), etc., with the same names and functionality as in C, 

• floating-point classification functions to determine if a value is finite, infinite or not a number, 

• 1D table lookups with linear and cubic interpolation, 

• 3D table lookups with linear interpolation,  

• 3D scattered data interpolation, 

• 3D vector, 3 by 3 and 4 by 4 matrix operations, such as addition, dot product, vector-times-matrix and matrix-times-matrix 
multiplication, and 

• conversions among a few standard color spaces: RGB with arbitrary primaries and white point, XYZ, L*u*v* and L*a*b*. 

2.7 Modules 

CTL programs may be split into multiple source files or "modules".  This is useful for assembling libraries of commonly-used 

functions and lookup tables.  For example, a logLookup module might contain a function that performs table lookups in a 

logarithmic space: 

float 
logLookup1D (float lut[], float xMin, float xMax, float x) 
{ 
    return pow (10, lookup1D (lut, log10 (xMin), log10 (xMax), log10 (x))); 
} 
 

The CTL code for the module is stored in a file called logLookup.ctl, in a directory or folder where the CTL interpreter can 

find it.   

Another module, logLut, may define a lookup table.  This module is stored in file logLut.ctl: 
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const float logLut[] = 
{ 
    0.03, 0.05, 0.10, 0.12, 0.15, 
    0.20, 0.50, 1.00, 2.10, 3.30, 
    4.45, 5.20, 5.40, 5.50, 5.50 
}; 
 
const float logLutMin = 0.0; 
const float logLutMax = 3.0; 
 

Other CTL modules that want to call function logLookup1D() or use the logLut table can now "import" the logLookup 

and logLut modules.  For example, module applyLogLut, stored in file applyLogLut.ctl, may contain the following: 

import "logLookup"; 
import "logLut"; 
 
void 
applyLogLut 
    (output varying half r1, 
     output varying half g1, 
     output varying half b1, 
     varying half r, 
     varying half g, 
     varying half b, 
{ 
    r1 = logLookup1D (logLut, logLutMin, logLutmax, r); 
    g1 = logLookup1D (logLut, logLutMin, logLutmax, g); 
    b1 = logLookup1D (logLut, logLutMin, logLutmax, b); 
} 
 

When module applyLogLut is loaded, the import statements cause the CTL interpreter to also load modules 

logLookup and logLut.  Function applyLogLut() can now call function lookLookup1D() and access array 

logLut as well as constants logLutMin and logLutMax. 
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3 Description of the CTL interpreter 

The CTL interpreter is implemented as a set of C++ libraries that can be linked into a color management system or into any 
other application program that needs to run CTL programs.  The interpreter's C++ programming interface allows applications to 
load CTL modules and to call the functions that are defined in those modules. 

3.1 Theory of Operation 

The CTL interpreter is split into a "front" and a "back" end.  When a CTL module is loaded, the front end parses the module's 
source text and generates an abstract syntax tree, reporting syntactic and semantic errors in the process.  The front end also 

maintains the interpreter's symbol table and performs constant expression evaluation and dead code elimination.  For example, 

const int n = 1; 
foo (x + 4 / (n + 1)); 
     

becomes  

foo (x + 2); 
 

while the statement 

if (1 > 2) 
    bar(); 
  

is deleted entirely. 

The interpreter's back end handles converting the abstract syntax tree into executable code and actually running the code.  The 
interpreter's front end is constructed in such a way that multiple different back end implementations can be supported.   

The reference CTL interpreter implementation includes a single back end.  This back end generates instructions for a single-
instruction-multiple-data (SIMD) virtual machine.  This SIMD back end is portable, allowing CTL programs to be run on any 
platform that supports C++.  Other, higher-performance back ends can be implemented for specific applications or hardware 
platforms.  For example, the syntax tree produced by the front end could be compiled into native machine code.  On platforms 

with GPU (graphics processing unit) support, the back end could generate OpenGL shading language, HLSL or Cg code and 
run it on the GPU. 

The SIMD back end is fast enough for still images of moderate resolution, but working with high-resolution images or real-time 
playback of moving images requires either a faster interpreter back end or other acceleration techniques (see section 3.9). 

3.2 C++ API 

This section gives a brief overview of the CTL interpreter's C++ application programming interface (API).  Calling the API shown 
here is somewhat cumbersome because of the complex mechanism for passing function call arguments and return values back 

and forth between CTL and C++.  In many cases, writing an abstraction layer on top of the interpreter's API, with a simplified, 
application-specific argument passing mechanism, will be more convenient than calling the interpreter directly.  One such 

abstraction layer, which simplifies processing of images that are stored in OpenEXR format, is described in Appendix A.   

In C++, the CTL interpreter front end is implemented in class Ctl::Interpreter.  Class Interpreter is an abstract 

base class.  The back end adds a concrete class SimdInterpreter that is derived from class Interpreter.    Once we 

have an interpreter, we can load CTL modules, and we can call CTL functions. 

The following example creates an interpreter with a SIMD back end, and loads a CTL module: 

SimdInterpreter interp; 
interp.loadModule ("adjustExposure"); 
 

Loading the module proceeds as follows: 

The environment variable CTL_MODULE_PATH is interpreted as a colon-separated list of directory names.  The interpreter 

visits each of the directories listed in CTL_MODULE_PATH and looks for a file called adjustExposure.ctl.  For instance, 

if CTL_MODULE_PATH contains the string  

ctl:/home/ctl:/usr/local/ctl 
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then the CTL interpreter checks if any of the following files exist: 

ctl/adjustExposure.ctl 
/home/ctl/adjustExposure.ctl 
/usr/local/ctl/adjustExposure.ctl 
 

The CTL interpreter opens the first adjustExposure.ctl file it finds.  The Interpreter parses the contents of the file and 

generates executable SIMD code.  If file adjustExposure.ctl contains any import statements, then the modules 

named in the import statements are loaded as well.  If any file cannot be found or if errors are found during parsing, then 

loadModule() throws an exception.  Otherwise, loadModule() returns, and we are ready to call the functions defined in 

module adjustExposure. 

We assume that the module we have just loaded defines an adjustExposure() function.  In order to call this function, we 

must create a FunctionCall object: 

FunctionCallPtr call = interp.newFunctionCall ("adjustExposure"); 
 

The FunctionCallPtr, above, is a reference-counting pointer to the FunctionCall object.  If the pointer goes out of 

scope and there are no other FunctionCallPtrs that point to the same FunctionCall object, then the 

FunctionCall object is automatically deleted.   

The FunctionCall object has methods to access the arguments and the return value of function adjustExposure().  

The argument and the return value are represented as FunctionArg objects.  Each FunctionArg object has a pointer to 

a DataType object which describes the argument's type.  The FunctionArg object also has a data buffer for the 

argument's value. 

Before calling a CTL function, the C++ application must set the function's input arguments.  After the CTL function returns, the 

application can examine the output arguments and the return value.  We assume that CTL function adjustExposure() has 

the following signature: 

void 
adjustExposure 
    (output varying half rOut, 
     output varying half gOut, 
     output varying half bOut, 
     varying half r, 
     varying half g, 
     varying half b, 
     float e = 0) 
 

In order to simplify the code below, we assume that the C++ application that calls adjustExposure() is written so that it 

knows the parameter list in advance, instead of discovering the parameters at run time. 

Given a pointer to a FunctionCall object that refers to the CTL function adjustExposure(), as well as a value for e, 

and buffers for n pixels worth of image data (input channels r, g, and b; and output channels rOut, rOut and bOut), the 

C++ function callCtlChunk() passes the input pixel data to the CTL interpreter, calls the CTL function, and retrieves the 

output pixel data from the CTL interpreter: 

void 
callCtlChunk 
    (FunctionCallPtr call, 
     size_t n, 
     half rOut[], 
     half rOut[], 
     half rOut[], 
     const half r[], 
     const half g[], 
     const half b[], 
     float e) 
{ 
    // First set the input arguments for the function call: 
 
    FunctionArgPtr rArg = call->findInputArg ("r"); 
 
    if (!rArg || 
        !rArg->type().cast<HalfType>() || 
        !rArg->isVarying()) 
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    { 
        // The CTL function has no argument "r", the argument 
        // is not of type half, or the argument is not varying 
 
        throw ArgExc ("Cannot set value of argument 'r'"); 
    } 
    else 
    { 
        memcpy (rArg->data(), r, n * sizeof (half)); 
    } 
 
 
    FunctionArgPtr gArg = call->findInputArg ("g"); 
    ... 
 
    FunctionArgPtr bArg = call->findInputArg ("b"); 
    ... 
 
    FunctionArgPtr eArg = call->findInputArg ("e"); 
 
    if (!eArg || 
        !eArg->type().cast<FloatType>() || 
         eArg->isVarying()) 
    { 
        // The CTL function has no argument "e", the argument 
        // is not of type float, or the argument is not uniform 
 
        throw ArgExc ("Cannot set value of argument 'e'"); 
    } 
    else 
    { 
        *(float*)eArg->data() = e; 
    } 
 
    // Now we can call the CTL function for 
    // pixels 0, through n-1 
 
    call->callFunction (n); 
 
    // Retrieve the results 
     
    FunctionArgPtr rOutArg = call->findOutputArg ("rOut"); 
 
    if (!rOutArg || 
        !rOutArg->type().cast<HalfType>() || 
        !rOutArg->isVarying()) 
    { 
        // The CTL function has no argument "rOut", the argument 
        // is not of type half, or the argument is not varying 
 
        throw ArgExc ("Cannot set value of argument 'rOut'"); 
    } 
    else 
    { 
        memcpy (rOut, rOutArg->data(), n * sizeof (half)); 
    } 
 
    FunctionArgPtr gOutArg = call->findOutputArg ("gOut"); 
    ... 
 
    FunctionArgPtr bOutArg = call->findOutputArg ("bOut"); 
    ... 
} 
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The code above uses the functions FunctionCall::findInputArg() and FunctionCall::findOutputArg() 

to lookup parameters by name: findInputArg() and findOutputArg() return either a pointer to the FunctionArg 

that corresponds to the CTL function parameter with the specified name, or 0 if the CTL function has no such parameter. 

As written above, callCtlChunk() can handle only a limited number of pixels at a time.  This is because the maximum 

value of n that can be passed to call->callFunction() is limited by the implementation of the CTL interpreter back end.  

(For the reference SIMD back end, the limit is a few thousand pixels.)  In order to handle images of arbitrary size, the pixel data 
must be broken up into smaller chunks: 

void 
callCtl 
    (Interpreter &interp, 
     FunctionCallPtr call, 
     size_t n, 
     half rOut[], 
     half rOut[], 
     half rOut[], 
     const half r[], 
     const half g[], 
     const half b[], 
     float e) 
{ 
    while (n > 0) 
    { 
        size_t m = min (n, interp.maxSamples()); 
        callCtlChunk (call, m, rOut, gOut, bOut, r, g, b, e); 
         
        n    -= m; 
        rOut += m; 
        gOut += m; 
        bOut += m; 
        r    += m; 
        g    += m; 
        b    += m; 
    } 
} 

3.3 FunctionCall and FunctionArg Objects 

The code shown above already knows the signature of the CTL function it intends to call.  Sometimes a C++ application 

program must call a CTL function whose signature is not known in advance.  In this case, the application must query the 

corresponding FunctionCall object in order to discover the names and types of the function's parameters.   

Class FunctionCall has the following member functions:  

returnValue() Returns a FunctionArgPtr that points to the CTL function's return value.   

numInputArgs() 
numOutputArgs() 

Returns the number of input or output arguments.   

inputArg(i) 
outputArg(i) 

Returns a FunctionArgPtr that points to the input or output argument number i.  

Input arguments are numbered from 0 to numInputArgs()-1; output arguments are 

numbered from 0 to numOutputArgs()-1.  The numbering of the arguments does 

not necessarily correspond to the order of the function's parameters in the CTL source 
code.   

findInputArg(n) 
findOutputArg(n) 

These functions return a pointer to the input or output argument with name n, or a null 

FunctionArgPtr if the function has no argument with name n.   

 

Given a pointer to a FunctionArg, an application program can call its member functions to get more information:  

name() Returns the FunctionArg's name.  This is the same as the name of the function's 

parameter in the CTL source code.   
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type() Returns a DataTypePtr that points to a DataType object, which describes the 

FunctionArg's type.  DataType objects are described in section 3.4.   

isVarying() Indicates if the FunctionArg is varying or uniform.   

data() Returns a void pointer that points to a buffer for the argument's value.  Before calling a 

CTL function, the application program must store values for the function's input 

arguments in the corresponding buffers.  After calling the CTL function, the application 
can read the buffers for the output argument values and the return value.   

hasDefaultValue() Returns true if the FunctionArg has a default value.  Calling 

setDefaultValue() makes the FunctionArg equal to the default value.  The 

application program can read a FunctionArg's default value by first calling 

setDefaultValue() and then reading the contents of the buffer for the argument's 

value. 

3.4 DataType Objects 

As the name suggests, the DataType of a FunctionArg indicates the type of the corresponding CTL function parameter.  

Class DataType is the base of a C++ class hierarchy that describes CTL types.  Each of the six fundamental CTL types is 

represented by a class that is derived from DataType:  

C++ class CTL type  

BoolType bool 

IntType int 

UIntType unsigned int 

HalfType half 

FloatType float 

VoidType    void  

 

Class DataTypePtr has a cast() member function template.  The application program can call cast() to determine 

whether a DataTypePtr points to a BoolType, IntType, etc. object.  Knowing the CTL type of a function argument, the 

application can cast the buffer for the argument's value to the appropriate C++ type.  For example: 

FunctionArgPtr arg = call->inputArg (0); 
DataTypePtr type = arg->type(); 
 
if (BoolTypePtr boolType = type.cast<BoolType>()) 
{ 
    // CTL type bool 
 
    bool *value = (bool *)arg->data(); 
 
    if (arg->isVarying()) 
    { 
        // varying bool 
 
        for (int i = 0; i < n; ++i) 
        value[i] = ...; 
    } 
    else 
    { 
        // uniform bool 
 
        value[0] = ...; 
    } 
} 
else if (IntTypePtr intType = type.cast<IntType>()) 
{ 
    // CTL type int 
 
    ... 
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} 
... 

3.5 ArrayType and StructType Objects 

C++ classes ArrayType and StructType, which are derived from class DataType, represent CTL arrays and structs.  

Class ArrayType has a fairly large number of member functions, but only a few are relevant here.  The rest are used 

internally by the CTL interpreter:  

size() Returns the number of elements in the array.   

elementSize() Returns the size, in bytes, of an individual array element.   

objectSize() Returns the size, in bytes, of the entire array.   

elementType() Returns a DataTypePtr that points to the type of the array's elements.   

 

Multi-dimensional CTL array types are represented as nested one-dimensional arrays.  For example, CTL type float[3] is 

represented in C++ as an ArrayType object whose size(), elementSize() and objectSize() member functions 

return 3, 4 and 12 respectively (assuming that the size of a float is four bytes).  The elementType() function returns a 

pointer to a FloatType.  CTL type float[5][3] is represented by an ArrayType whose size(), elementSize() 

and objectSize() functions return 5, 12 and 60.  The elementType() function returns a pointer to the ArrayType for 

CTL type float[3].   

Accessing an array element requires some address arithmetic in order to find the memory location of the element.  The following 

example sets the value of element [x][y] of a varying two-dimensional array of float for pixel number i: 

float v = ...; 
FunctionArgPtr arg = call->inputArg (...); 
DataTypePtr type = arg->type(); 
char *data = arg->data(); 
 
ArrayTypePtr arrayType; 
ArrayTypePtr nestedArrayType; 
FloatTypePtr elementType; 
 
if ((arrayType = type.cast<ArrayType>()) && 
    (nestedArrayType = arrayType->elementType().cast<ArrayType>()) && 
    (elementType = nestedArrayType->elementType().cast<FloatType>()) && 
    arg->isVarying()) 
{ 
    // If we arrive here, we know that arg refers to a 
    // varying two-dimensional array of float. 
    // Compute the address of array element [x][y] for pixel i. 
     
    char *addr = data + 
   i * arrayType->objectSize() + 
   x * arrayType->elementSize() + 
   y * nestedArrayType->elementSize(); 
 
    // Set the array element equal to v. 
 
    *(float *)addr = v; 
} 
 

C++ class StructType describes CTL structs.  The following member functions are of interest to application programs that 

want to pass structs to CTL functions: 

name() Returns the name of the struct type.   

objectSize() Returns the size, in bytes, of the entire struct.   
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members() Returns a pointer to an std::vector<Member> that describes the CTL struct's members. 

C++ class Member has three fields: name is an std::string that indicates the member's 

name, type is a DataTypePtr that describes the member's type, and offset indicates 

the offset, in bytes, of the member from the beginning of the struct.   

 

For example, CTL type 

struct S 
{ 
    int x; 
    int y; 
}; 
 

is represented by a StructType object whose name() and objectSize() member functions return "S", and 8 

respectively (assuming that the size of an int is four bytes).  members() returns a two-element vector.  The type pointers 

in both elements point to an IntType.  The name fields are set to "x" and "y", and the offsets are 0 and 4. 

3.6 Error Handling 

When an operation such as loading a module or creating a FunctionCall object fails, the CTL interpreter reports the failure 

by throwing a C++ exception.  All exceptions thrown by the interpreter are derived from class std::exception.  Calling an 

exception's what() member function returns an error message that describes problem, for example, "Cannot load CTL module 

'oid'. Opening file '/ctl/modules/oid.ctl' failed (permission denied).” 

While attempting to load a module, the interpreter may find that the code in the module contains errors, for example, references 

to undefined variables.  In this case the interpreter prints one or more diagnostic messages before throwing an exception.  By 

default, those messages are printed by sending them to the standard error file, std::cerr.  An application program can 

redirect the messages by supplying its own message output function: 

void 
myMessageOutput (const std::string &message); 
{ 
    ... // output the message 
} 
... 
 
Ctl::setMessageOutputFunction (myMessageOutput); 
... 
 

The mechanism for diagnostic message output is also used by CTL's print statement.  Rerouting diagnostic messages from the 
interpreter also reroutes messages that are printed by the CTL program. 

3.7 Breaking Infinite Loops 

CTL programs may contain loops, and those loops could be infinite.  If a CTL program enters an infinite loop, then the calling 

C++ application program will hang.  In order to prevent this, class Interpreter has two member functions that allow the 

application to abort running CTL programs:  

The setMaxInstCount() function limits the number of instructions that a CTL program can execute.  If a program exceeds 

the instruction limit, it aborts, and the C++ call to callFunction() that started the CTL program throws a 

Ctl::MaxInstExc exception.  What exactly an "instruction" is, depends on the interpreter back end.  Typically an instruction 

is a simple operation such as an addition, fetching the value of a variable, or storing a value in a variable.  A CTL statement 

typically corresponds to multiple instructions. 

The abortAllPrograms() function aborts all currently running CTL programs.  The C++ calls to callFunction() that 

started the aborted CTL programs throw Ctl::AbortExc exceptions.  abortAllPrograms() is useful only in multi-

threaded C++ programs.  Since a thread that is already hanging in callFunction() cannot call any other functions, another 

thread must call abortAllPrograms().  (It is not safe to call abortAllPrograms() from a signal handler; the call 

could cause the interpreter to deadlock.)  
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3.8 Thread-Safety and Parallelism  

The CTL interpreter was designed to be thread-safe.  The threads in a multi-threaded C++ application program can share a 

single Interpreter object.  The Interpreter object uses mutual exclusion to protect its internal data structures when multiple 

threads simultaneously call member functions such as loadModule() or newFunctionCall(). 

Multiple application threads can concurrently call different CTL functions or even the same function.  In order to do this, each 

thread must create its own private FunctionCall objects.  FunctionCall objects are not thread-safe, and must not be 

shared between threads. 

With the SIMD interpreter back end, overlapping CTL function calls that are initiated by multiple application threads are 
executed simultaneously.  On a multi-processor computer, this allows the application program to accelerate CTL color 

transforms by multi-threading: the input image is split into multiple pieces, and each thread applies the transforms to one piece. 

Other interpreter back ends may exhibit less parallelism.  For example, a GPU-accelerated back end might not be able to run 
two independent CTL functions simultaneously.  In this case overlapping calls initiated by multiple application threads would 
have to be executed one after the other. 

3.9 Accelerating the Transforms 

The interpreter's SIMD back end is probably not fast enough for real-time processing of moving images or for high-resolution still 
images.  Writing a significantly faster back end is a non-trivial exercise.     

On a computer with multiple processors, transforms can be accelerated by multi-threading.   With n processors the image can 

be split into n tiles, and each tile can be processed by a separate thread.  The threads can share a single Interpreter 

object, but each thread must use its own FunctionCall objects.  Applying the transform to the image should be close to n 

times as fast as with a single thread. 

Depending on how many transforms must be applied to an image, and depending on the complexity of the CTL code for those 
transforms, multi-threaded execution may still not be fast enough.   

Because CTL does not allow static variables, all CTL programs are pure functions: the output of a CTL function call depends 
only on the CTL source code and on the arguments passed to the function.  The output does not depend on side effects of other 

function calls.   

Because transforms are pure functions, any transform or series of concatenated transforms can be tabulated.  Typically, the 

input and output images of a series of transforms each have three channels.  The transforms may have other parameters, but 
their values are uniform and do not vary from pixel to pixel.  For a given set of uniform parameter settings, the series of 

transforms becomes a function that maps a 3D point to another 3D point.  Usually this function is continuous and can be 
approximated by a 3D lookup table.  The table can be generated automatically by applying the transforms to an appropriate set 

of pixels. 

Applying the table to an input image takes a constant amount of time, independent of the number or complexity of the 

transforms from which the table was generated.  On systems with GPU support, where the lookup table can be converted into a 
3D texture, applying the table to an image can be made extremely fast.  Multi-threading and tabulating the transforms should 

make it possible to use the interpreter with the SIMD back end in real-time applications. 
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4 Design Decisions 

4.1 Limited Set of Language Features 

CTL is a fairly simple programming language, and it is missing features that are found in other languages.  CTL was designed to 

do two things: describe color transforms in an unambiguous way, and provide a portable implementation to run those transforms. 

Typical color transforms are not algorithmically complex; except for lookup tables, most CTL programs are fairly short.  CTL is 

expressive enough to implement typical color transforms with reasonable effort.  A number of features that one would want to 
include in a general-purpose language were left out because those features would rarely be used by color transforms, and the 

expected payoff would not justify the implementation effort.  Examples include dynamic memory allocation, user-defined function 
and operator overloading, or classes with member functions and inheritance. 

CTL supports constant static data, but it disallows static variables.  Without static variables, CTL functions cannot communicate 
with each other, except by calling one another, and functions cannot retain state between invocations.  This allows different 

interpreter back ends to process pixels in whatever order works best, without affecting the results.   

A second reason for disallowing static variables is security: Without static variables, it is very difficult to send or receive data via 

covert channels such as steganographic encoding in an image's pixels. 

4.2 No Support for Execute-Only Color Transforms 

In files, CTL programs are always stored as source code.  The CTL interpreter does not support an "unreadable" execute-only 

representation for CTL programs.  Such a representation might be desirable in situations where the author of a color transform 
wants to allow someone else to use the transform without revealing how the transform actually works. 

Designing an execute-only representation for CTL programs would not be too hard, but making it resistant to reverse-
engineering is nearly impossible.  Since color transforms are pure functions, they can be probed and tabulated (see section 3.9).  

With access to the interpreter's source code one could also write a reverse compiler that could turn an execute-only CTL 
program into source code that is functionally equivalent to the original. 

4.3 Portability 

CTL programs are meant to be portable.  Except for slight numerical differences (caused by rounding or by acceleration 

techniques such as tabulating), running a given CTL program should produce the same results, independent of the operating 
system or the C++ application that hosts the interpreter.   

In order to avoid platform-dependencies, the CTL interpreter does not support extension modules written in other languages.  
CTL programs can only import modules that are also written in CTL.  The interpreter has no public interface for calling C++ 

functions from CTL.  (CTL has a standard library of built-in functions, which are, at least for the SIMD back end, written in C++, 
but this library is compiled into the interpreter, and the CTL-to-C++ function call mechanism is not part of the interpreter's 
external interface.)  

As mentioned above, CTL programs are always stored as source code.  This representation is inherently portable.  It would be 

possible to support a portable binary file format for pre-compiled CTL programs.  Loading CTL programs from binary files might 
be faster than directly loading the source code, but since typical CTL programs are fairly short, binary files wouldn't save a lot of 
time. 

4.4 SIMD Back End 

At present, the CTL interpreter comes only with one back end, which translates the CTL source into code for a SIMD virtual 

machine.   The virtual machine does not rely on special hardware such as graphics co-processors, or a main processor with 
SIMD machine instructions.  The SIMD interpreter back end is fast enough to be usable, but other implementations could be 

significantly faster. 

The SIMD back end provides a portable reference implementation of CTL.  The SIMD back end runs on any platform that 

supports C++, and it defines a standard for "correct" execution of CTL programs that other back ends must match.  By definition, 
the SIMD reference implementation is always correct. 
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4.5 Security 

Image files and their associated color transforms are meant to be routinely exchanged between various parties.  CTL color 

transforms are programs, and in general, running programs of unknown provenance might carry a risk of running malicious 
software such as Trojan horses or viruses.   

Introducing malicious software into a computer system via CTL programs is very difficult because the language is restricted.  
CTL programs have no access to the host computer's file system, system calls, clock, communication protocols, or raw memory; 

and CTL programs cannot load extension modules that are written in languages other than CTL.  Barring bugs in the interpreter, 
the only data that CTL programs can see or modify are the arguments passed to CTL functions that are called directly by a C++ 

application program.  CTL's lack of static variables prevents CTL programs from remembering any data between calls. 

CTL programs cannot capture information about the host system, they cannot send data somewhere else, and they cannot gain 

control of the host machine. 
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5 CTL Language Reference 

This section provides a reference for the CTL programming language.  CTL is derived from the C programming language, with 
some elements borrowed from C++.  This reference assumes the reader is familiar with C, and at least syntactical elements of 
C++.   C is defined by standard ISO/IEC 9899, and C++ is defined by standard ISO/IEC 14882. 

5.1 Syntactic Notation 

The language grammar is included in its entirety in Section 5.8, and is quoted in many of the sections that follow.  Syntactic 

categories are printed in this font.  Text that appears literally in programs is printed in this font.  For syntactic rules, 

alternatives appear on separate lines. The special symbol Ø means that the empty string or “nothing” is a valid alternative.  For 

example: 

importList: 

 Ø 

 importStatement importList 

 

importStatement: 

 import stringLiteral ; 
 

Means that an importList can be either the empty string or an importStatement followed by an importList.  An importStatement 

consists of the keyword import, followed by a stringLiteral and a semicolon. 

5.2 Lexical Elements 

The text in a CTL files is tokenized using white space to delineate tokens.  White space consists of spaces, tabs and new-lines, 
and tokens are one of the following: 

token: 

 keyword 

 name 

 punctuator 

 literal 
 

There is only support for ASCII characters; Unicode or other larger character sets are not supported; trigraph sequences,  
alternate names and universal character names of C++ are not supported. 

No C-style preprocessing occurs in CTL, and there are no preprocessing tokens. 

5.2.1 Keywords 

The CTL keywords are primarily a subset of C++ keywords, with a few additions.  Here are keywords in common with C++: 
 

bool 
const 
false 
float 
for 
if 
int 
long 
return 
short 
signed 
struct 
true 
unsigned 
void 
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while 
namespace 

 
These are also CTL keywords: 
 

ctlversion 
half 
input 
output 
print 
uniform 
varying 

 
The following are reserved as keywords but are not used: 
 

break 
continue 
string 

 

Names must begin with a non-digit character A through Z or '_', and in other ways conform to the C specification of identifiers, 
except that there are no predefined identifiers.  For example,  these are valid names: 

foo2  foo_bAr_34  __func__   ____ 
 

and these are not valid names: 

2foo \foo -fred- 

5.2.2 Punctuators 

Punctuators are the following subset of C: 

[  ]  (  )  {  }  .  *  +  -  ~  !  /  %  <<  >>  <  >  <=  >=  ==  !=  
^  &  |  &&  ||  ;  =  , 
  

The following C punctuators are not part of the CTL language: 

->  ++  --  ?  :  ...  *=  /=  %=  +=  -=  &=  ^=  |=  <<=  >>=  #  ## 
<:  :>  <%  %>  %:  %:%: 

5.2.2.1 Comments 

Both comment types, // and /*, are supported in CTL as specified in C++. 

5.2.3 Literals 

There are six types of literals;  the five that exist in C++, plus a half-literal: 

literal: 

 integer-literal 

 floating-literal 

 string-literal 

 boolean-literal 

 half-literal 

5.2.3.1 Integer Literals 

Integer literals include decimal, hexadecimal and octal literals, as specified in C++. 
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5.2.3.2 Floating Literals 

Floating literals behave as specified in C++, except that the F and L suffix (the floating-suffix) are not allowed.  For example, 

the following are valid floating literals: 

1.2  1.2e2  .02  0.02 
 

These are not valid floating-literals: 

1.2F  1.2f 1.2l 1.2L 

5.2.3.3 Half Literals 

Half literals are similar to floating literals, but have a letter h (or  H) suffix to differentiate them.  Half literals have type half. The 

following are valid half literals: 

1.2h  1.2e3h  3e-02H 

5.2.3.4 String Literals 

String-literals are as specified in C++, except that there is no support for wide literals; The optional prefix letter L is not 
supported.  CTL is designed for implementing data transforms, so for simplicity string literals can only be used as inputs to the 
print statement (primarily intended for debugging) and the import directive. 

In CTL the character strings used in the import directive are simply string literals.  (In C++ there are slightly different rules 

governing the filename specifier used in the #include directive.)  The import directive is described in Section 5.3.3. 

5.2.3.5 Boolean Literals 

Boolean literals, as in C++, consist of true and false and have type bool. 

5.3 Basic Concepts 

5.3.1 Varying Values 

CTL is designed to succinctly describe color transforms.  A CTL program describes the operations that are performed on a 
single pixel of an image.  Syntactically, the operations that constitute a color transform take the form of a CTL function.  When a 
transform is applied to an image, the corresponding CTL function is called repeatedly, once for every pixel in the image.  The 
values of some of the function's parameters vary from one pixel to the next, for example, the red, green and blue channels of 
pixels in an RGB image.  These are called “varying” values.  The values of other parameters are the same for all pixels; these 
are called “uniform” values. 

Whether the parameters of a CTL function are meant to be varying or uniform matters to a C++ application that calls the CTL 
function.  The application needs to know if a CTL function's parameter refers to per-pixel data (that is, to an image channel) or 
not. However, the CTL function itself does not depend on, and cannot even determine, whether a value is varying or uniform. 

5.3.2 What is A CTL Program 

A CTL program at the highest level is a list of function definitions, constant definitions and struct type definitions.  Import 
statements and name spaces are also available to ease modularization.  A CTL program may be split into multiple modules. 

Note that a CTL program cannot contain global variables.  Global constants are allowed, but all variables are local to functions. 

5.3.3 Modules 

The contents of single CTL source file are referred to as a “module”.   Each module has a name.  In order to make the 
constants, struct type definitions and functions in a module available, a CTL interpreter must “load” the module.  After a module 
has been loaded, the functions defined in the module can be called, and the type definitions and constants in the module may 
be used by other modules. 
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Modules can load other modules via import directives, which specify the names of the modules to be loaded.  Import directives 
must occur before any of the module's definitions but after an optional CTL version statement: 

module: 

 ctlVersionStatement importList moduleBody 
 

importList: 

 Ø 

 importStatement importList 

 

importStatement: 

 import stringLiteral ; 
 

A module is loaded only once.  If subsequent import statements referring to the same module are encountered, the interpreter 
ignores them. 

The mechanism that loads CTL modules is implementation specific;  the reference CTL interpreter loads modules from files.  

The name of the file that contains a given module is formed by appending “.ctl” to the module name.  An environment 

variable, CTL_MODULE_PATH, specifies a list of directories, or folders, which are searched in order to locate the file (See 
section 3.2). 

5.3.4 CTL Version 

An optional CTL version statement at the beginning of a module specifies the version of CTL for which the module was written: 

ctlVersionStatement: 

 Ø 

 ctlversion  intLiteral ; 
 

The definition of CTL as described in this document has been assigned version number 1.  CTL may be extended in the future; 
when that happens, a new, higher version number will be assigned to the extended definition.  Modules written for an extended 
version of CTL may not run with an interpreter that implements an older version of the language.  

If the CTL interpreter encounters a version statement while attempting to load a module, it compares the interpreter’s CTL 
version and the version specified in the version statement.  If the specified version is greater than the interpreter’s version, the 
interpreter prints a message to warn the user that loading the module may fail.  The interpreter then continues the loading 
process, regardless of the specified version. 

5.3.5 Name Spaces 

Only one name space can be defined per module.  If there is a name space declaration, it occurs at the beginning of the module 
and encloses all definitions in the module in curly braces.  If no name space is declared in a module, then the module's 
definitions create names in the global name space. 

moduleBody: 

 funcConstStructList 

 namespace name {  funcConstStructList }  
 

If a name space is specified, every definition in the module belongs to that name space.  A particular name space can be used 
by multiple modules.  

Outside of a name space, constants, structures and functions belonging to the name space must be qualified by the name 

space's name.  As in C++ the :: operator indicates name space qualification: 

scopedName: 

 name 

 name :: name 

 :: name 
 

Note that compound statements (also called blocks) such as function bodies create nested anonymous name spaces.  Variables 
defined in functions cannot be accessed outside the function body, but can be accessed without qualifiers by blocks nested in 
the function. 
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If an unqualified name (without the :: operator) is used to refer to a type or an object, the interpreter checks the containing 

name spaces, starting with the local (most nested) name space and proceeding through less nested name spaces until the 

global name space.  If a name is preceded by a :: operator, then the name refers to a type or an object in the global 

namespace.  If a name is preceded by a name space name and a :: operator, then it refers to a type or an object in the 

corresponding namespace. 

For example: 

In module MyModule: 

namespace MyLib 
{ 
 
    const int i1 = 0; 
    const int i2 = 0; 
 
    void 
    myFunc() 
    { 
        const int i1 = 1; 
 
        { 
            int i = i1;           // assigns 1 to i 
            int j = MyLib::i1;    // assigns 0 to j 
            int k = i2;           // assigns 0 to k 
        } 
    } 
} 
 

In a separate module: 

import "MyModule"; 
 
const int i1 = 3; 
 
void 
myFunc() 
{ 
    int i = ::i1;         // assigns 3 to i 
    int j = MyLib::i1;    // assigns 0 to j 
} 
 

There is no equivalent to the using declaration from C++.   

The :: operator is only used to reference name space names; CTL does not support classes, and structs support only local 

data variables. 

5.3.6 Definitions 

Objects and struct types in CTL are declared and defined at the same time.  There are no “forward declarations” that indicate 
the existence of an object or type, without also defining it. 

There can only be one definition of any variable, function or struct type in a CTL program. 

The body of a CTL module contains a list of functions, constant definitions and struct type definitions. 

funcConstStructList: 

 Ø 

     funcConstOrStruct  funcConstStructList 

 

funcConstOrStruct: 

 function 

     constantDefinition 

 structDefinition 
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Storage of variables is automatic; storage is guaranteed to be allocated while the variable is in scope and will be deallocated 
after the variable goes out of scope.  

There are no memory allocation or deallocation functions (CTL does not support dynamic storage) and there are no custom 
constructors or destructors. 

Uninitialized data may be set to zero or not, depending on the implementation. 

5.3.7 Scope 

As in C++, variable scope extends from the point of definition to the end of the containing block, except when a more local 

variable is present to take precedence.  The following function runs to completion (as in C, assert(x) does nothing if x is 

true, and aborts the program if x is false): 

void 
testScope2() 
{ 
    int i = 0; 
    { 
        assert( i == 0 ); 
        int i = 3; 
        assert( i == 3 ); 
    } 
    assert(i == 0); 
} 

 

Functions cannot be nested and thus their scope extends from the point of definition to the end of the module. 

5.3.8 Initialization of Constants, Evaluation of Constant Expressions 

The initialization of global constants, including the evaluation of expressions required for their initialization, is performed once, 
when the module that contains the constants is loaded.  Expressions that have constant value may be evaluated any time after 
they are parsed.  The reference interpreter evaluates and simplifies expressions with constant value immediately after they are 
parsed. 

5.3.9 Types 

CTL is a strongly typed language, with a set of types similar to C++. 

5.3.9.1 Fundamental Types 

There are six fundamental types in CTL: 

bool 
int 
unsigned 
unsigned int 
half 
float 
void 
 

The unsigned type qualifier by itself is shorthand for unsigned int.  The int and unsigned int types are 32-bit 

signed and unsigned integral numbers.  The float type is a 32-bit floating-point number. 

The half type is a 16-bit floating point number, which can be used in arithmetic expressions anywhere a float can be used.  

Conversions from half to float are lossless, but conversions from float to half may be rounded to the nearest 

representable half.  An overflow may occur when converting a float to a half, if the float value is beyond the range of 

representable half values, which will result in the value being  an infinity with the same sign as the float value. 

Type void is used only to indicate that a function does not return a value. 
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String literals are of type “string”, but can only be used in import directives and the print statement.  It is not possible to declare 
variables or function parameters of type string, or structs with members of type string or arrays of strings.  There are no 
operators whose operands are strings.  

There is no equivalent to the C++ types char, short or long. 

5.3.9.2 Compound Types 

There are two kinds of compound types in CTL, structs and arrays.  There is no equivalent to C++ pointers, or enum and 

union types. 

5.3.9.2.1 Struct Types 

A struct is a collection of named objects, similar to the C struct.  Struct type equivalence in CTL is based on the scoped name of 
the type, rather than the members of the struct.  Two types are the same if they were declared using the same type name in the 
same name space.  Two structs with different scoped type names are not equivalent, even if they have the same members. 

5.3.9.2.2 Array Types 

An array is a sequence of objects of the same type, as in C.  Array types consist of a base type and a sequence of sizes, one 
size for each dimension of the array. 

5.3.10 Const Qualifier 

A variable can be defined as const, which specifies that it cannot be modified – it cannot be used on the left hand side of an 

assignment.  A variable that has been defined as const is called a constant.  Function arguments with the input qualifier are 

const as well, as explained in section 5.4.3. 

5.3.11 Type Conversion 

There is no explicit casting operator in CTL.  Implicit type conversion occurs in arithmetic expressions, assignments, initialization 
and function calls. 

For the purpose of implicit type conversion, all arithmetic types have a rank.  The list of types in increasing rank order is bool, 

int, half, and float.    The unsigned and signed int types have the same rank.   As in C++, a type conversion to a 

higher rank, called a promotion, does not change the value.  Other type conversions do occur in some situations, and may 
change the value represented, as specified in C++. 

If a type is used in a place where a type with higher rank is expected, the type is promoted to the expected type.  If a type is 
used in a place where a lower or equal rank is expected, the syntax may or may not be valid depending on the type of 
expression or statement, as explained in the following sections.  If it is valid syntax, a type conversion is performed from the 
actual type to the expected type.  For example: 

int i = 2.7; 
float f = 2.3; 
 
if(f > i) 
    i = ~f;  // error int operand expected 
 

In the first initializer, the float literal 2.7 is converted to an int type with value 2.  In the expression involving the binary > 

operator, f > i,  the value of i has type int, and is converted to a float (with no change in value).  The bitwise complement 

operator (~) accepts only integer operands,  so the expression ~f is malformed. 

It is not possible to convert a compound type to any other type.  Any fundamental type can be converted to any other 

fundamental type except void, but some expressions only allow type promotion. 
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5.4 Definitions 

As mentioned previously, the bulk of a CTL module is a list of definitions, including struct type definitions, constant definitions 
and function definitions.  Definitions of variables and struct types also may occur in the body of a function. 

5.4.1 Struct Type Definitions 

A subset of the syntax for defining structs in C++ is allowed: 

structDefinition: 

 struct name { structMemberDefinitions } ; 
 

structMemberDefinitions 

 Ø 

 baseType name arraySize ; structMemberDefinitions 
 

For example: 

struct Mixed 
{ 
   int i; 
   float f; 
   bool b; 
   half ah[2]; 
}; 
 

As in C++, this defines a new type, Mixed, which can be used in subsequent variable declarations.  Definitions for structs can 

be placed in the global name space, inside named name spaces, or in the anonymous local name spaces of functions or code 

blocks.  The struct keyword can only be used to define a new struct type. In contrast to C++, the type definition is always a 

separate statement from struct variable definitions, and there is no facility for creating unnamed struct types. 

5.4.2 Variable Definitions 

Variable definitions are specified as follows:  

variableDefinition: 

 baseType name arraySize ; 

 constness baseType name arraySize = expression ; 

 constness baseType name arraySize = compoundInitializer ; 

 constness baseType name arraySize , expression ; 
 

constness: 

 Ø 
 const 
 

arraySize: 

 Ø 
     [ ] 

     [ expression ] 
 

If a variable definition occurs outside a function body, the variable type must be const.  The complete grammar refers to this 

subset as the constantDefinition. 

The first three forms of variable definition of fundamental types are syntactically as specified in C++.  For example: 

int i;               // value undefined 
half h = 1.201e2; 
float f = 2.1*h; 
bool b = someBooleanFunc(f,h); 
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Compound objects are initialized using nested lists enclosed in braces.  The length and nesting of the initializer must exactly 
match the length and depth of the compound type being initialized (in contrast to the various initialization options supported 
in C). 

Here are some examples, using the Mixed struct defined in the previous section: 

Mixed m1; 
Mixed m2 = {1, 1.0, false, {1,2}}; 
Mixed m3 = {1, 1.0}; // error in CTL (ok in C++) 
 
Mixed am1[2] =     {{1, 1.0, false, {1,2}},  
                    {2, -1.0, true, {-1,-2}}}; 
Mixed am2[2][1] = {{{1, 1.0, false, {1,2}}},  
                   {{2, -1.0, true, {-1,-2}}}}; 
Mixed am3[1][2] = {{{1, 1.0, false, {1,2}},  
                    {2, -1.0, true, {-1,-2}}}}; 
 

When an initialization is included in the definition, the size specification (the expression between brackets) may be omitted: 

Mixed am3b[][] = {{{1, 1.0, false, {1,2}},  
                   {2, -1.0, true, {-1,-2}}}}; 
 

An comma-separated initialization expression may also be used to initialize a variable or constant.  This allows a constant to be 
initialized by passing it as an output parameter to a function.  For example: 

void 
initArray (output float x[]) 
{ 
    for (int i = 0; i < x.size; i = i+1) 
        x[i] = i; 
} 
 
const float f[100], initArray (f); 
 

For the duration of the initialization expression, the variable or constant has non-const type and is defined as though no 

initializer were present.  In the example above, the variable f is set by the function initArray().  Once the expression is 

evaluated, f has const type and may no longer be modified. 

5.4.3 Function Definitions 

They syntax of function definitions is as follows: 

function: 

 returnType name ( parameterList ) compoundStatement 
 

parameterList: 

 Ø 

     nonEmptyParameterList 

 

nonEmptyParameterList: 

 parameter 

 nonEmptyParameterList , parameter 
 

parameter: 

 input inputParameter 
 inputParameter 

     output outputParameter 
 

compoundStatement: 

 { statementList } 
 

Function arguments in CTL are passed by reference.  All arguments types have one of two qualifiers, input or output.  

Input parameters have const type and cannot be modified in the body of the function.  Parameters without qualifiers are input 
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parameters.  Output parameters are intended to store the result of the function, but an output parameter does have an initial 
value that is determined by the function's caller.  Here is an example: 

bool  
foo (output float f, half h) 
{ 
    //  h = 2.0;  // error, h is an input parameter 
 
    if (h > f) 
    { 
        return false; 
    } 
    else 
    { 
        f = h; 
        return true; 
    } 
} 
 
bool 
bar () 
{ 
    float f = 2; 
    foo (f, 3); // returns false 
    foo (f, 1); // assigns 1 to f, returns true 
} 

5.4.3.1 Function Parameters 

The syntax of function parameters is as follows: 

inputParameter: 

 varyingHint baseType name arraySize 

 varyingHint baseType name arraySize = compoundInitializer 

 varyingHint baseType name arraySize = expression 

 

outputParameter: 

 varyingHint baseType name arraySize 

 

varyingHint: 

 Ø 
 varying 
 uniform 
 

The definition of a parameter may include a hint as to whether the parameter is meant to be varying or uniform.  If neither 

varying nor uniform is specified, then the parameter is assumed to be uniform.  The varying or uniform hint is only of 

interest to C++ applications that want to call CTL functions.  The function can actually be called with any argument being varying 
or uniform, regardless of the hint. 

A default value for an input parameter can be specified by providing an initializer or expression assignment (as in C++).  If the 
function is called with fewer arguments than the function has parameters, then default values are used for the unspecified 
parameters.  The expression specifying a parameter's default value must have constant type – it must be possible to evaluate it 
at compile time.  Parameter default expressions cannot refer to other parameters, and output parameters cannot have default 
values. 

void 
copyWDefaults(output int aiOut[2], int aiIn[2] = {1, 2}) 
{ 
    for(int i = 0; i < 2; i=i+1) 
    { 
        aiOut[i] = aiIn[i]; 
    } 
} 
... 
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int ai[2]; 
copyWDefaults(ai, ai2); // sets ai[0] to 1 and ai[1] to 2 
 

5.4.3.2 Variable-Size Arrays 

If a function argument is an array type, one or more of its sizes can be unspecified, by leaving the size blank.  These array 
arguments are called variable-size arrays, and allow a function to be called with parameters that have any size in the 

unspecified dimensions.  For example, the previous example could have been written using variable-size arrays and the size 

operator:  

void 
copyVarying(output int aiOut[], int aiIn[] = {1, 2}) 
{ 
    if( aiOut.size != aiIn.size) 
        return; 
 
    for(int i = 0; i < aiOut.size; i=i+1) 
    { 
        aiOut[i] = aiIn[i]; 
    } 
} 

 

As stated in Section 5.3.9.2.2 the type of an array consists of its base type and a sequence of array sizes, one per dimension.  
When a function call is parsed, if a particular array dimension is variable-sized, that dimension is not considered in the type 
checking of the arguments.  As long as the base type and dimensions with specified sizes match the passed arguments, the 

array is considered a type match.   For example, float[][2][] is considered the same type as float[1][2][3] and 

the same type as float[100][2][300].  The above function can be called as follows: 

    int ai[2]; 
    int ai2[] = {3,4}; 
    copyVarying(ai, ai2); 
    assert(ai[0] == 3 && ai[1] == 4); 
 
    int ai3[] = {-1}; 
    int ai4[] = {-2}; 
    copyVarying(ai3);      // returns without copying 
    assert(ai3[0] == -1);  // because aiIn[] uses default 
    copyVarying(ai3, ai4); 
    assert(ai3[0] == -2); 
 

In the body of a function definition, variable array types do not match any other type – not even other variable-size arrays.  As a 
result, expressions with varying types cannot be used in some statements, such as assignment or initialization.   

void 
varyingBody(output int ai1[][2],  
            output int ai2[][3],  
            output int ai3[][2]) 
{ 
    ai1 = ai2;             // error - int[][2] != int[][3] 
    ai1 = ai3;             // error - int[][2] != int[][2] 
    int aiL1[][2] = ai1;   // error 
 
    ai1[0] = ai3[0];       // ok - int[2] == int[2] 
 
    int aiL2[ai1.size][2]; // error - size unknown at 
                           // compile time 
} 
 

Only function arguments can have variable sizes; it is not possible to define a variable-size local variable. 

The size operator returns the size of the left-most dimension for a given-type.  To extract the size of other dimensions, the size 

operator must be used in combination with the array index operator.  If the dimension is variable, the size operator is 

evaluated at run time.  The size operator evaluates to an integer at compile time if the size of the tested dimension is not 

variable.  
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void 
testArraySize(int aiArg[1][][2]) 
{ 
    assert(aiArg.size == 1);       // = 1 at compile time 
    assert(aiArg[0].size == 3);    // unknown at compile time 
    assert(aiArg[0][0].size == 2); // = 2 at compile time 
} 
... 
 
int ai3d [1][3][2]; 
testArraySize(ai3d); 
 
int ai3d2 [1][2][2]; 
testArraySize(ai3d2); // assert fails 
 

Variable-sized arrays cannot be returned by functions. 

5.5 Statements 

The body of a function contains a list of statements.  Statements include the variable and struct type definitions described 
above, plus familiar C-style statements for other purposes, such as control flow, assignment, and expression: 

statement: 

 variableDefinition 

 structDefinition 

 compoundStatement 

 

 whileStatement 

 forStatement 

 ifStatement 

 

 assignment 

 expressionStatement 

 

 nullStatement 

 printStatement 

 returnStatement 

 

There are no switch, do, jump, break, or continue statements. 

5.5.1 Compound Statements 

Compound statements, also called code blocks, are curly braces containing a list of statements.  As in C/C++, they are used in 
the bodies of other control structures, such as for loops and if statements, but may also stand on their own.   

compoundStatement: 

 { statementList } 
     

statementList: 

 Ø 

 statement statementList 

 

Statements contained in the statementList of a compound statement have their own local name space, as described in Section 

5.3.5. 

5.5.2 While Statements 

The while  statement has the same form as in C++: 

whileStatement: 
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 while ( expression ) statement 
 

The while statement is evaluated over and over until the expression is false.  During each evaluation, the expression is 

evaluated and its type is converted to type bool.  If the result is true, the trailing statement is evaluated. 

5.5.3 For Statements 

The for statements have the following form: 

forStatement: 

 for ( forInitStatement ; expression ; forUpdateStatement ) statement 
 

forInitStatement: 

 variableDefinition 

 assignment 

 expressionStatement 

 

forUpdateStatement: 

 simpleAssignment 

 simpleExpressionStatement 

 

A for statement is similar to its namesake in C/C++, in that it contains an initialization, conditional test and an update 

statement, but the form is more restricted.  The initialization can contain one variable definition, assignment or expression (as 
opposed to lists of them).  The update statement consists of a single assignment or expression statement.  Expressions and 
expression statements are explained below. 

5.5.4 If Statements 

The if statements have the form as specified in C++. 

ifStatement: 

 if ( expression ) statement 

 if ( expression ) statement else statement 
 

The expression is evaluated and its type converted to a Boolean.  If the expression is true, the statement is executed.  If the 

expression is false, the optional statement following the else is executed. 

5.5.5 Assignments 

The assignment statement sets the value of an object on the left hand side.   

assignment: 

 simpleAssignment ; 
 

simpleAssigment: 

 expression = expression 
 

The left hand side must evaluate to an object that is modifiable.  The right hand side must be either the same type as the left 
hand side or a type that can be converted to the left hand side type.  If the right hand side is not the same type as the left hand 
side, a type conversion will occur. 

Assignments can use any modifiable type on the left hand side, including compound types.  For example: 

void 
sampleAssignments() 
{ 
    int ai1[1][2]; 
    int ai2[2] = {1,2}; 
    ai1[0] = ai2; 
} 
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Notice also the example in Section 5.6.1. 

There are no compound assignment operators, such as += or -=. 

In CTL, assignments are statements, not expressions; a statement such as 

a = b = c; 
 

is not allowed. 

5.5.6 Expression Statements 

As in C++ any expression can stand alone as a statement with a semicolon appended. 

expressionStatement: 

 simpleExpressionStatement ; 
 

simpleExpressionStatement: 

 expression 

 
Expressions are discussed in Section 5.6.  The expression statement is useful only for its side effects, for example in calling a 
function with output arguments. 

5.5.7 Null Statements 

As in C or C++, a blank statement followed by a semicolon can be used wherever a statement may occur, to indicate that no 
operation is to be performed. 

nullStatement: 
 ; 

5.5.8 Print Statements 

A print statement is provided to assist with debugging CTL programs, or to provide very limited user feedback.  A print statement 
outputs the result of expressions to the standard output: 

printStatement: 

 print ( exprList ) ; 
 

exprList: 

 Ø 

 nonEmptyExprList 

 

nonEmptyExprList: 

 expression 

 nonEmptyExprList , expression 
 

Each expression in the exprList can have any of the fundamental types or be a string literal.  The underlying implementation 

should convert each of the fundamental types to characters in some intuitive way.  The reference implementation calls the 

default C++ stringstream << operator.  For example:   

bool b = false; 
float f = -.00000012; 
print("b = ", b, ", f = ", f); 
print(", random literals: ", 4, ", ", 3.00977h,"\n"); 
 

causes the following to be generated in the reference implementation: 

b = 0, f = -1.2e-07, random literals: 4, 3.00977 
 

The print statement does not print compound types. 
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If a varying expression is passed to the print statement, the print statement may print multiple values, one per pixel.  Print 
statements do not in any way affect the values returned by CTL transformations, so the exact formatting is not specified.  This 
flexibility makes the print statement easier to implement, but limits its usefulness beyond debugging.   

The reference implementation is described here as an example; the details in the remainder of this section are not part of the 
language specification. 

The reference implementation prints a varying expression inside of brackets with the word varying appearing first.  CTL 

functions are run simultaneously on arrays of values of a particular length, and the function calls are called with arrays of this 
length until pixels have been processed.  The print statement outputs all the values at once from a particular varying function 
array's function call. 

For example, if f is a varying argument the implementation may call the function printExample on arrays of f values of 

length 5.  A particular evaluation instance with values  1.2, 0, 0, -1.001, and 0, for the following function: 

void 
printExample(input varying float f) 
{ 
    print("all f: ", f, "\n"); 
    if(f > 1) 
        print ("f > 1: ", f, "\n"); 
} 
 

generates the following output: 

all f: [varying (0, 1.2) (1, 0) (2, 0) (3, -1.001) (4, 0)] 
f > 1: [varying (0, 1.2)] 
 

In practice the run time engine is most efficient when it runs on thousands of values, and images have millions of pixels.  When 
the print function is called on a varying value in practice, the reference run-time engine generates thousands of separate print 
statements, each of which is very long – only useful as a focused debugging technique. 

5.5.9 Return Statements 

The return statement is used to terminate a function and to optionally return a value: 

returnStatement: 
 return ; 

 return expression ; 
 

As in C++, the expression can be omitted only in functions with void type. 

5.6 Expressions 

An expression is the combination of values, objects and operands that specify a value or call a function, as specified in the C 
and C++ standards. 

The expression grammar is simpler than the C++ grammar because there are fewer operators and fewer side effects from 

expressions.  The language does not have the sizeof operator, conditional operator (x? a:b), comma operator or any 

compound assignment operators (+=, ^= etc.). 

There are also no explicit cast operators or function pointers.  Side effects from expressions are limited to calls of functions with 
output parameters and the print statement.  There are no assignment expressions – assignments occur in assignment 
statements only and cannot be nested. 

Operator precedence is as specified in C++. 

5.6.1 Primary Expressions 

A primary expression is the simplest expression building block, consisting of a literal, a variable name, function call or some 
combination of member names or array access expressions. 

primaryExpression: 
 true 
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 false 
 intLiteral 

 floatLiteral 

 halfLiteral 

 stringLiteral 

     ( expression ) 
 scopedName memberArrayExpression 

 scopedName ( exprList ) 
 

memberArrayExpression: 

 Ø 

 . name memberArrayExpression 
 . size 

          [ expression ] memberArrayExpression 
 

Struct members and functions must be referred to explicitly by name.  The member array expressions and function call are the 
only postfix operators supported.  As in C++, struct member access and array subscripting can be arbitrarily nested, and 
multidimensional arrays are indexed by multiple repeated subscripts.  The following demonstrates some nested primary 
expressions used in assignments. 

void 
sampleExpressions() 
{ 
    struct Inside   {int i[2];}; 
    struct Outside  {Inside ain[2][3];}; 
 
    Inside in = {{1,2}}; 
 
    Outside out = {{{{{0,1}},{{2,3}},{{4,5}}}, 
                     {{{6,7}},{{8,9}},{{10,11}}}}}; 
 
    in = out.ain[0][1]; 
    assert(in.i[0] == out.ain[0][1].i[0]); 
} 
 

As described in Section 5.4.3.2, the size of an array can be determined using the size operator.  Structs can not have a 

member named size, but variables can be named size. 

5.6.2 Arithmetic Expressions 

The following table summarizes the arithmetic operators that are supported.  It is the complete set of arithmetic operators with 
the same precedence as  in C++, but the type conversion process is somewhat different from C++. 

 

Name in Grammar Operator Result Operand Type Result Type 

unaryExpression - x negative arithmetic type of x 

 ~ x bitwise complement integer type of x 

 ! x bitwise not arithmetic type of x 

mulitplicativeExpression x * y multiplication arithmetic higher rank type of x or y 

 x / y division arithmetic higher rank type of x or y 

 x % y remainder of division of x by y integer higher rank type of x or y 

additiveExpression x + y addition arithmetic higher rank type of x or y 

 x - y subtraction arithmetic higher rank type of x or y 

shiftExpression x << y bitwise shift x left y digits  integer higher rank type of x or y 

 x >> y bitwise shift x right y digits  integer higher rank type of x or y 
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Name in Grammar Operator Result Operand Type Result Type 

relationalExpression x < y true if x is less than y arithmetic higher rank type of x or y 

 x > y true if x is greater than y arithmetic higher rank type of x or y 

 x <= y true if x is less than y or x equals 

y 
arithmetic higher rank type of x or y 

 x >= y true if x is greater than y or x 

equals y 
arithmetic higher rank type of x or y 

equalityExpression x == y true if x equals y arithmetic bool 

 x != y true if x is not equal to y arithmetic bool 

bitAndExpression x & y bitwise and integer higher rank type of x or y 

bitOrExpression x | y bitwise or integer higher rank type of x or y 

bitXorExpression x ^ y bitwise exclusive or integer higher rank type of x or y 

andExpression x && y sequential and: false if x 

converted to bool is false, 

otherwise y, converted to bool.  If x 

is false, then y is not evaluated. 

arithmetic bool 

orExpression x || y sequential or: true if x converted to 

bool is true, otherwise y, 

converted to bool.  If x is true, 

then y is not evaluated. 

arithmetic bool 

 

In expressions with two operands, if the operands are not the same type, a type conversion will occur.  If possible, the left 
operand is promoted to the type of the right operand.  Otherwise, if possible, the right operand is promoted to the type of the left 
operand.  If neither promotion is possible, the expression is not valid. 

In expressions requiring integer operands, Boolean operands are promoted to integers.  Such operations are not permitted on 

operands with float or half types. 

The functions in Section 5.7.2 can be used to test if an arithmetic expression generates a result that is a not a number.  It is 
recommended that the underlying platform does not attempt to trap floating point exceptions during execution of a CTL program. 
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5.7 Standard Library 

CTL has a standard library of built-in functions and numeric constants, which are described below. 

5.7.1 Numeric Constants 

Type Name Value 

float M_E e  (approximately 2.7182818) 

float M_PI π  (approximately 3.1415927) 

float FLT_MAX the largest positive number that is exactly representable as a float 

float FLT_MIN the smallest positive number that is exactly representable as a normalized float 

float FLT_EPSILON the smallest positive ε  such that ε+1  is exactly representable as a float 

float FLT_POS_INF +∞  

float FLT_NEG_INF −∞  

float FLT_NAN a quiet NaN (not-a-number) 

half HALF_MAX the largest positive number that is exactly representable as a half 

half HALF_MIN the smallest positive number that is exactly representable as a half 

half HALF_EPSILON the smallest positive ε  such that ε+1  is exactly representable as a half 

half HALF_POS_INF +∞  

half HALF_NEG_INF −∞  

half HALF_NAN a quiet NaN (not-a-number) 

int INT_MAX the largest positive integer that can be stored in an int 

int INT_MIN the largest negative integer that can be stored in an int 

unsigned int UINT_MAX the largest integer that can be stored in an unsigned int 

 

5.7.2 Floating-Point Number Classification 

 
bool isfinite_f (float x); 
bool isfinite_h (half x); 

returns true if x is finite, that is, if x is not +∞ , −∞  or a NaN;  returns false otherwise 

 
bool isnormal_f (float x); 
bool isnormal_h (half x); 

returns true if x is a normalized number; returns false otherwise 

 
bool isnan_f (float x); 
bool isnan_h (half x); 

returns true if x is a NaN; returns false otherwise 

 
bool isinf_f (float x); 
bool isinf_h (half x); 

returns true if x is +∞  or −∞ , that is, if x is an infinity; returns false otherwise 
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5.7.3 Elementary Functions 

 
float acos (float x);  

returns the arc cosine of x.  The result is in radians, and between 0 and π . 

 

float asin (float x);  

returns the arc sine of x.  The result is in radians, and between 
2

π
−  and 

2

π
+ . 

 

float atan (float x);   

returns the arc tangent of x.  The result is in radians, and between 
2

π
−  and 

2

π
+ . 

 

float atan2 (float y, float x); 

returns the arc tangent of 
x

y
, but takes the signs of x and y into account to determine the quadrant of the result.  

The result is in radians, and between π−  and π+ . 

 

float cos (float x); 

returns the cosine of x, where x is given in radians 

 

float sin (float x); 

returns the sine of x, where x is given in radians 

 

float tan (float x); 

returns the tangent of x, where x is given in radians 

 

float cosh (float x); 

returns 
2

xx ee −+
 

 

float sinh (float x); 

returns 
2

xx ee −−
 

 

float tanh (float x); 

returns 
xx

xx

ee

ee
−

−

+

−
 

 
float exp (float x); 

returns xe  

 

half exp_h (float x); 

a faster version of  exp(x) that returns a value of type half 
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float log (float x); 

returns the natural logarithm of x 

 

float log_h (half x); 

a faster version of  log(x) where x is of type half 

 

float log10 (float x); 

returns the base-10 logarithm of x 

 

float log10_h (half x); 

a faster version of  log10(x) where x is of type half 

 

float pow (float x, float y); 

returns yx  

 

half pow_h (half x, float y); 

a faster version of  pow(x,y) where x and the return value are of type half 

 

float pow10 (float x); 

returns pow(10,x) 

 

half pow10_h (float x); 

a faster version of  pow10(x) that returns a value of type half 

 

float sqrt (float x); 

returns x  

 

float fabs (float x); 

returns the absolute value of x 

 

float floor (float x); 

returns an integral value, i, such that 10 <−≤ ix  

 

float fmod (float x, float y); 

returns ynx ⋅− , where n is an integer such that n has the same sign as 
y

x
 and 10 <−≤ n

y

x
 

 
float hypot (float x, float y); 

returns 22 yx +  

5.7.4 Operations on 3D Vectors, 3x3 Matrices and 4×4 Matrices 

float[3] mult_f_f3 (float f, float x[3]); 

scalar-times-vector multiplication, returns xf ⋅  
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float[3] add_f3_f3 (float x[3], float y[3]); 

vector addition, returns yx +  

 
float[3] sub_f3_f3 (float x[3], float y[3]); 

vector subtraction, returns yx −  

 
float[3] cross_f3_f3 (float x[3], float y[3]); 

cross product, returns yx ×  

 
float dot_f3_f3 (float x[3], float y[3]); 

dot product, returns yx ⋅  

 
float length_f3 (float x[3]); 

vector length, returns xx ⋅  

 
float[3][3] mult_f33_f33 (float A[3][3], float B[3][3]); 
float[4][4] mult_f44_f44 (float A[4][4], float B[4][4]); 

matrix-times-matrix multiplication, returns BA ⋅  

 

float[3][3] mult_f_f33 (float f, float A[3][3]); 
float[4][4] mult_f_f44 (float f, float A[4][4]); 

scalar-times-matrix multiplication, returns Bf ⋅  

 

float[3][3] add_f33_f33 (float A[3][3], float B[3][3]); 
float[4][4] add_f44_f44 (float A[4][4], float B[4][4]); 

component-wise matrix addition, returns BA +  

 

float[3][3] invert_f33 (float A[3][3]); 
float[4][4] invert_f44 (float A[4][4]); 

matrix inversion, returns 1−A if A  is invertible, or I  if A  is not invertible 

 
float[3][3] transpose_f33 (float A[3][3]); 
float[4][4] transpose_f44 (float A[4][4]); 

matrix transposition, returns TA  

 
float[3] mult_f3_f33 (float x[3], float A[3][3]); 

vector-times-3×3-matrix multiplication; returns Ax ⋅ , where x and the result, y, are interpreted as row vectors 

 
float[3] mult_f3_f44 (float x[3], float A[4][4]); 

vector-times-4×4-matrix multiplication; returns Ax ⋅ , where x and the result, y, are interpreted as row vectors with 

homogeneous coordinates, (x[0], x[1], x[2], 1) and (y[0], y[1], y[2], 1) 

 

Note the order of the operands in the vector-times-matrix functions, above.  The functions compute “row vector-times-matrix”, 
not “matrix-times-column vector” results.  Textbooks often use matrix-times-column vector notation.  Converting this to row 
vector-times-matrix notation requires transposing all matrices and swapping the left and right operands of all multiplications.  For 
example: 

,

987

654

321

















=A  ,

444

333

222

















=B  ,

3

2

1

















=x  xABy ⋅⋅=  

In CTL, this would be expressed as follows: 
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float A[3][3] = {{1, 4, 7}, 
                 {2, 5, 8}, 
                 {3, 6, 9}}; 
 
float B[3][3] = {{2, 3, 4}, 
                 {2, 3, 4}, 
                 {2, 3, 4}}; 
 
float x[3] = {1, 2, 3}; 
 
float y[3] = mult_f3_f33 (x, mult_f33_f33 (A, B)); 
 

 
Color conversions in textbooks are sometimes defined in terms of 3×4 or 4×3 matrices.  The CTL standard library does not 
directly support a separate 4×3 matrix type.  Any 4×3 matrix can be represented as a 4×4 matrix by adding a fourth column with 
the values  





















1

0

0

0

. 

3×4 matrices must be transposed before adding the fourth column.   

For example, the matrices 





















=

121110

987

654

321

1C  and  
















=

12963

11852

10741

2C  

can both be represented in CTL as the same 4×4 matrix: 

float C[4][4] = {{ 1,  2,  3,  0}, 
                 { 4,  5,  6,  0}, 
                 { 7,  8,  9,  0}, 
                 {10, 11, 12,  1}}; 
 

5.7.5 Lookup Tables and Scattered Data Interpolation 

 
float lookup1D (float table[], float pMin, float pMax, float p); 
 

Function lookup1D() performs a one-dimensional table lookup with linear interpolation. 

lookup1D() returns f(p), where f is a piece-wise linear function.  For pMin ≤ p < pMax, f(p) is equal to 

table[i] * (1-s) + table[i+1] * s 
 

where 

t = (p – pMin) / (pMax – pMin) * (table.size-1) 
i = floor (t) 
s = t – i 
 

For p < pMin and p ≥ pMax, f(p) is equal to table[0] and table[table.size-1] respectively. 

 

float lookupCubic1D (float table[], float pMin, float pMax, float p); 
 

Function lookupCubic1D() performs a one-dimensional table lookup with cubic Hermite spline interpolation. 

lookupCubic1D() returns f(p), where f is a C1-continuous piece-wise cubic function that interpolates 

table[0] … table[table.size-1].   For pMin ≤ p < pMax, f(p) is equal to 
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table[i] * (2 * s*s*s – 3 * s*s + 1) + 
m0 * (s*s*s – 2 * s*s + s) + 
table[i+1] * (-2 * s*s*s + 3 * s*s2) + 
m1 * (s*s*s – s*s) 
 

where 

t = (p – pMin) / (pMax – pMin) * (table.size-1) 
i = floor (t) 
s = t – i 
 

m0 = (table[i+1] – table[i-1]) / 2  for i > 0 

m0 = (3 * table[i+1] – table[i] – m1 for i = 0 
 

m1 = (table[i+2] – table[i]) / 2   for i < table.size–2 

m1 = (3 * table[i+1] – table[i] – m0 for i = table.size-2 
 

For p < pMin and p ≥ pMax, f(p) is equal to table[0] and table[table.size-1] respectively. 

 

float interpolate1D (float table[][2], float p); 
 

Given a set of points, (table[i][0], table[i][1]), with 0 ≤ i ≤ table.size-1 and 

table[i][0] < table[i+1][0], function interpolate1D() first constructs a piecewise linear function, f, 

that interpolates the points. interpolate1D() then returns f(p).  

For table[i][0] ≤ p < table[i+1][1], f(p) is equal to  

table[i][1] * (1-s) + table[i+1][1] * s 
  

where  

s = (p - table[i][0]) / (table[i+1][0] - table[i][0]) 
  

For p < table[0][0] and p ≥ table[table.size-1][0], f(p) is equal to table[0][1] and 

table[table.size-1][1] respectively.  

If table[i][0] ≥ table[i+1][0] for some i, then f(p) is undefined.  

 

float interpolateCubic1D (float table[][2], float p); 
  

Given a set of points, (table[i][0], table[i][1]), with 0 ≤ i ≤ table.size-1 and 

table[i][0] < table[i+1][0], function interpolateCubic1D() first constructs a cubic Hermite 

spline, f, that interpolates the points. interpolateCubic1D() then returns f(p).  

For table[i][0] ≤ p < table[i+1][1], f(p) is equal to  

table[i] * (2 * s*s*s - 3 * s*s + 1) +  
m0 * (s*s*s - 2 * s*s + s) +  
table[i+1] * (-2 * s*s*s + 3 * s*s) +  
m1 * (s*s*s - s*s) 
  

where  

s = (p - table[i][0]) / (table[i+1][0] - table[i][0]) 
 
dx0 = (table[i][0] - table[i-1][0])  
dx1 = (table[i+1][0] - table[i][0])  
dx2 = (table[i+2][0] - table[i+1][0]) 
 
dy0 = (table[i][1] - table[i-1][1])  
dy1 = (table[i+1][1] - table[i][1])  
dy2 = (table[i+2][1] - table[i+1][1] 
  

m0 = (dy1 + dx1 * dy0 / dx0) / 2  for i > 0  

m0 = (3 * dy1 - m1) / 2    for i = 0  
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m1 = (dy1 + dx1 * dy2 / dx2) / 2  for i < table.size-2  

m1 = (3 * dy1 - m0) / 2    for i = table.size–2 
  

For p < pMin and p ≥ pMax, f(p) is equal to table[0] and table[table.size-1] respectively. 

If table[i][0] ≥ table[i+1][0] for some i, then f(p) is undefined.  

 

float[3] lookup3D_f3 
  (float table[][][][3], 
   float pMin[3], 
   float pMax[3], 
   float p[3]); 
 

Function lookup3D_f3() performs a three-dimensional table lookup with trilinear interpolation: 

lookup3D_f3() returns f(p), where f is a function that maps 3D points to 3D points.  The function is defined as 

follows: 

table, pMin and pMax define an axis-aligned 3D grid of (iMax+1) by  (jMax+1) by (kMax+1) evenly spaced 

points, where 

iMax = table.size - 1 
jMax = table[0].size - 1 
kMax = table[0][0].size – 1 
 

and grid point (i,j,k) is at location 

(pMin[0] + (pMax[0]-pMin[0]) * i/iMax, 
 pMin[1] + (pMax[1]-pMin[1]) * j/jMax, 
 pMin[2] + (pMax[2]-pMin[2]) * k/kMax) 
 

If a point, p, is at the same location as grid point (i,j,k), then f(p) is equal to table[i][j][k].  If p is not at 

a grid point location, then f(p) is trilinearly interpolated from the eight nearest grid points: 

f(p) = 
    ((table[i][j][k]     * (1-si) + table[i+1][j][k]     * si) * (1-sj) + 
     (table[i][j+1][k]   * (1-si) + table[i+1][j+1][k]   * si) *  sj   ) * (1-sk) + 
    ((table[i][j][k+1]   * (1-si) + table[i+1][j][k+1]   * si) * (1-sj) + 
     (table[i][j+1][k+1] * (1-si) + table[i+1][j+1][k+1] * si) *  sj   ) *  sk 
 

where 

ti = (p[0] – pMin[0]) / (pMax[0] – pMin[0]) * iMax 
i = floor (ti) 
si = ti - i 
 
tj = (p[1] – pMin[1]) / (pMax[1] – pMin[1]) * jMax 
j = floor (tj) 
sj = tj - j 
 
tk = (p[2] – pMin[2]) / (pMax[2] – pMin[2]) * kMax 
k = floor (tk) 
sk = tk – k 
 

If p is outside the grid, then f(p) is equal to f(q), where point q is at position 

(max (pMin[0], min (pMax[0], p[0])), 
 max (pMin[1], min (pMax[1], p[1])), 
 max (pMin[2], min (pMax[2], p[2]))) 
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void lookup3D_f 
  (float table[][][][3], 
   float pMin[3], 
   float pMax[3], 
   float p0, float p1, float p2, 
   output float q0, output float q1, output float q2); 
 
void lookup3D_h 
  (float table[][][][3], 
   float pMin[3], 
   float pMax[3], 
   half p0, half p1, half p2, 
   output half q0, output half q1, output half q2); 
 

Functions lookup3D_f() and lookup3D_h() are variants of lookup3D_f3() that are more convenient to call 

when the three components of point p happen to reside in three float or half variables rather than in a three-

element array.  lookup3D_f() and lookup3D_h() are both equivalent to the following code: 

float p[3] = {p0, p1, p2}; 
float q[3] = lookup3D_f3 (table, pMin, pMax, p); 
q0 = q[0]; 
q1 = q[1]; 
q2 = q[2]; 

 
void scatteredDataToGrid3D (float data[][2][3], 
                            float pMin[3], 
                            float pMax[3], 

                            output float grid[][][][3]); 
 

Function  scatteredDataToGrid3D() performs three-dimensional scattered data interpolation and builds a table 

that can be used as an input for the three-dimensional table-lookup functions listed above. 

data is an array of pairs of 3D points. Each pair, data[i], represents a sample of an unknown function: the value of 

the function at data[i][0] is data[i][1]. 

scatteredDataToGrid3D() approximates this unknown function by interpolating the samples stored in data.  

First, a smooth function, f, is constructed such that f(data[i][0]) is equal to data[i][1] for each i with i≤0 

and i<data.size. Function f is then sampled at regular intervals, and the result is stored in array grid: 

int iMax = grid.size - 1; 
int jMax = grid[0].size - 1; 
int kMax = grid[0][0].size - 1; 
 
for (i = 0; i <= iMax; i = i+1) 
    for (j = 0; j <= jMax; j = j+1) 
        for (k = 0; k <= kMax; k = k+1) 
        { 
            float p[3] = 
            { 
                pMin[0] + (pMax[0] - pmin[0]) * i/iMax; 
                pMin[1] + (pMax[1] - pmin[1]) * j/jMax; 
                pMin[2] + (pMax[2] - pmin[2]) * k/kMax; 
            }; 
 
            grid[i][j][k] = f(p); 
        } 
    } 
} 
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5.7.6 Conversions between Standard Color Spaces 

 
 struct Chromaticities 
 { 
     float red[2]; 
     float green[2]; 
     float blue[2]; 
     float white[2]; 
 }; 
 
float[4][4] RGBtoXYZ (Chromaticities c, float Y); 
float[4][4] XYZtoRGB (Chromaticities c, float Y); 
 

Functions  RGBtoXYZ() and  XYZtoRGB() compute matrices for converting between the CIE 1931 XYZ color 

space and an  RGB color space with arbitrary primaries and an arbitrary white point. 

If c defines the CIE xy coordinates of the primaries and the white point of the RGB space, and Y defines the luminance 

of the RGB triple (1,1,1), or “white”, then RGBtoXYZ(c,Y) returns a matrix, M, so that multiplying an RGB value by 

M produces an equivalent XYZ value. 

XYZtoRGB(c,Y) returns 1−M .  Multiplying an XYZ value by 1−M  produces an equivalent RGB value. 

The following example converts the RGB value (0.1, 1.2, 0.4) to CIE XYZ.  The primaries and white point of the RGB 
space match Recommendation ITU-R BT.709-5: 

const Chromaticities c = 
{ 
    {0.6400, 0.3300},  // red x and y 
    {0.3000, 0.6000},  // green x and y 
    {0.1500, 0.0600},  // blue x and y 
    {0.3127, 0.3290}   // white x and y 
}; 
 
const float Y = 100.0;  // 100 nits 
 
float M[4][4] = RGBtoXYZ (c, Y); 
 
float RGB[3] = {0.1, 1.2, 0.4}; 
float XYZ[3] = mult_f3_f44 (RGB, M); 
 

Note: The reason why RGBtoXYZ() and XYZtoRGB() return matrices instead of directly converting between RGB and 
XYZ values is speed. A vector-times-matrix multiplication is faster than computing the matrix.  The matrix can be built 
once, and then re-used many times. 

 
float[3] XYZtoLuv (float XYZ[3], float XYZn[3]); 
float[3] LuvtoXYZ (float Luv[3], float XYZn[3]); 
 

Conversion between CIE XYZ and CIE L*u*v*: 

Given an XYZ tristimulus, XYZ, and a white stimulus, XYZn, XYZtoLuv(XYZ,XYZn) returns an L*u*v* triple that is 

equivalent to XYZ. 

Given an L*u*v* triple, Luv, and a white stimulus, XYZn, LuvtoXYZ(Luv,XYZn) returns an XYZ tristimulus that is 

equivalent to Luv. 

 
float[3] XYZtoLab (float XYZ[3], float XYZn[3]); 
float[3] LabtoXYZ (float Lab[3], float XYZn[3]); 
 

Conversion between CIE XYZ and CIE L*a*b*: 

Given an XYZ tristimulus, XYZ, and a white stimulus, XYZn, XYZtoLab(XYZ,XYZn) returns an L*a*b* triple that is 

equivalent to XYZ. 

Given an L*a*b* triple, Lab, and a white stimulus, XYZn, LabtoXYZ(Lab,XYZn) returns an XYZ tristimulus that is 

equivalent to Lab. 
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5.7.7 Assertion 

void assert (bool assumption); 
 

If assumption is true, then assert() does nothing and returns.  If assumption is false, then assert() 

aborts the calling program.  (“Abort” means that the CTL program terminates immediately, and the CTL interpreter 

throws a C++ exception of type Iex::LogicExc.) 

The purpose of assert() is to make a programmer's assumptions about his or her program explicit, and to detect 

situations where those assumptions are violated. 

Example: 

float 
mySqrt (float x) 
{ 
    assert (x >= 0); 
 
    if (x == 0) 
        return 0; 
 
    float a = 1; 
    float b = x; 
 
    while (b < 1-FLT_EPSILON || b > 1+FLT_EPSILON) 
    { 
        a = 0.5 * (a + x/a); 
        b = x / (a*a); 
    } 
 
    return a; 
} 
 

If mySqrt(x) is called with 0≥x , the while loop quickly converges on x , and the function returns.  If x is less 

than zero then x is undefined and the loop does not terminate.  The call to assert() at the start of mySqrt() 

states explicitly that x must not be less than zero; if mySqrt(x) is called with x less than zero, then the calling 

program is aborted. 
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5.8 Complete Grammar 

module: 

 ctlVersionStatement importList moduleBody 

 

ctlVersionStatement: 

 Ø 

 ctlversion  intLiteral ; 
 

importList: 

 Ø 

 importStatement importList 

 

importStatement: 

 import stringLiteral ; 
 

moduleBody: 

 funcConstStructList 

 namespace name { funcConstStructList } 
 

funcConstStructList: 

 Ø 

     funcConstOrStruct funcConstStructList 

 

funcConstOrStruct: 

 function 

     constantDefinition 

 structDefinition 

 

function: 

 returnType name ( parameterList ) compoundStatement 
 

parameterList: 

 Ø 

     nonEmptyParameterList 

 

nonEmptyParameterList: 

 parameter 

 nonEmptyParameterList , parameter 
 

parameter: 

 input inputParameter 
 inputParameter 

     output outputParameter 
 

inputParameter: 

 varyingHint baseType name arraySize 

 varyingHint baseType name arraySize = compoundInitializer 

 varyingHint baseType name arraySize = expression 

 

outputParameter: 

 varyingHint baseType name arraySize 

 

 

compoundStatement: 
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 { statementList } 
     

statementList: 

 Ø 

 statement statementList 

 

statement: 

 variableDefinition 

 structDefinition 

 assignment 

 expressionStatement 

 compoundStatement 

 forStatement 

 ifStatement 

 nullStatement 

 printStatemen 

 returnStatement 

 whileStatement 

 

constantDefinition: 

 const baseType name arraySize = expression ; 

 const baseType name arraySize = compoundInitializer ; 
 

 

variableDefinition: 

 baseType name arraySize ; 

 constness baseType name arraySize = expression ; 

 constness baseType name arraySize = compoundInitializer ; 

 constness baseType name arraySize , expression ; 
 

assignment: 

 simpleAssignment ; 
 

simpleAssigment: 

 expression = expression 
 

expressionStatement: 

 simpleExpressionStatement ; 
 

simpleExpressionStatement: 

 expression 

 

forStatement: 

 for ( forInitStatement ; expression ; forUpdateStatement ) statement 
 

forInitStatement: 

 variableDefinition 

 assignment 

 expressionStatement 

 

forUpdateStatement: 

 simpleAssignment 

 simpleExpressionStatement 

 

ifStatement: 

 if ( expression ) statement 

 if ( expression ) statement else statement 
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returnStatement: 
 return ; 

 return expression ; 
 

printStatement: 

 print ( exprList ) ; 
 

nullStatement: 
 ; 
 

whileStatement: 

 while ( expression ) statement 
 

expression: 

 orExpression 

 

orExpression: 

 andExpression 

 orExpression || andExpression 
 

andExpression: 

 bitOrExpression 

     andExpression && bitOrExpression 
 

bitOrExpression: 

 bitXorExpression 

 bitOrExpression  | bitXorExpression 
 

bitXorExpression: 

 bitAndExpression 

 bitXorExpression ^ bitAndExpression 
 

bitAndExpression: 

 equalityExpression 

     bitAndExpression & equalityExpression 
 

equalityExpression: 

 relationalExpression 

     equalityExpression == relationalExpression 

 equalityExpression != relationalExpression 
 

relationalExpression: 

 shiftExpression 

     relationalExpression < shiftExpression 

     relationalExpression > shiftExpression 

     relationalExpression <= shiftExpression 

 relationalExpression >= shiftExpression 
 

shiftExpression: 

 additiveExpression 

 shiftExpression << additiveExpression 

 shiftExpression >> additiveExpression 
 

additiveExpression: 

 multiplicativeExpression 

 additiveExpression + multiplicativeExpression  
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 additiveExpression - multiplicativeExpression 
 

multiplicativeExpression:  

 unaryExpression 

 multiplicativeExpression * unaryExpression 

     multiplicativeExpression / unaryExpression 

     multiplicativeExpression % unaryExpression 
 

unaryExpression: 

 primaryExpression 

     - primaryExpression 

     ~ primaryExpression 

     ! primaryExpression 
 

primaryExpression: 

 true 

 false 

 intLiteral 

 floatLiteral 

 halfLiteral 

 stringLiteral 

     ( expression ) 
 scopedName memberArrayExpression 

 scopedName ( exprList ) 
 

memberArrayExpression: 

 Ø 

 . name memberArrayExpression 
 . size 

          [ expression ] memberArrayExpression 
 

initializer: 

 { exprList } 
 

scopedName: 

 name 

 name :: name 
 

exprList: 

 Ø 

 nonEmptyExprList 

 

nonEmptyExprList: 

 expression 

 nonEmptyExprList , expression 
 

returnType: 

 varyingHint void 

 varyingHint baseType arraySize 

 

 

constness: 

 Ø 
 const 
 

baseType: 
 bool 
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 int 
 unsigned 
 unsigned int 
 half 
 float 
 baseStructName 

 

compoundInitializer: 

 { initializerList } 

 { initializerList , compoundInitializer } 
 

initializerList: 

 intializer 

 initializerList , initializer 
 

varyingHint: 

 Ø 
 varying 
 uniform 
 

arraySize: 

 Ø 
     [ ] 

     [ expression ] 
 

structDefinition: 

 struct name { structMemberDefinitions } ; 
 

structMemberDefinitions 

 Ø 

 baseType name arraySize ; structMemberDefinitions 
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Appendix A Simplified API for OpenEXR 

The CTL interpreter's C++ interface for passing function call arguments to and from CTL is fairly complex, mostly because the 

interface must be able to accommodate cases such as varying structures and arrays, as well as limits on the number of pixels 
that the interpreter back end can handle simultaneously.  Given a specific application, it is usually possible to simplify the 
argument passing mechanism by writing an abstraction layer on top of the basic interface.   

The sample source code mentioned in Appendix C includes an application-specific interface for images that are stored in the 

OpenEXR file format.  This OpenEXR interface is not part of the CTL interpreter, and the interpreter does not depend on the 
OpenEXR file format.  OpenEXR is a high-dynamic-range image file format that is frequently employed by the visual effects 
industry. (For more information on OpenEXR, see http://www.openexr.com/) 

A.1  C++ Interface 

The OpenEXR interface consists of a single function, called applyTransforms().  The function applies a series of CTL 

functions to the pixels in an OpenEXR frame buffer and places the results in another OpenEXR frame buffer.  Two OpenEXR 

Header objects supply uniform input data to the CTL functions.  Uniform output data are stored in a third Header object. 

Function applyTransforms() has nine parameters: 

interpreter The instance of the CTL interpreter that will execute the color transformation functions.   

transformNames A list of CTL function names.  The corresponding CTL functions will be called in the order 

in which their names appear in this list.   

transformWindow The region in the input and output frame buffers that contains the pixel data that will be 

read and written by the CTL functions.  Typically this will be the same as the input image's 
data window.   

envHeader An OpenEXR header that contains information about "the environment", for example, 

display primary chromaticities and white point.   

inHeader An OpenEXR header that describes the pixels in the input frame buffer.  This will typically 

be the header of the image file that is the source of the pixels in the input frame buffer.   

inFb The input frame buffer; contains the pixels that are to be processed.   

outHeader An OpenEXR header where the values of the non-varying output parameters of the CTL 
functions will be stored.   

outFb The output frame buffer; holds the pixels output by the CTL functions.   

numThreads Number of parallel threads that will be used to execute the CTL functions. 

 

The applyTransforms() function first loads the CTL modules that contain the functions listed in transformNames.  

Each function is assumed to live in a module with the same name as the function.  If transformNames contains a function 

foo(), then module foo, in file foo.ctl, is loaded. 

applyTransforms() then calls each of the CTL functions listed in transformNames.  The values for the functions' input 

parameters come from the output arguments of the previous function in the list, from envHeader, from inHeader, or from 

inFb.  The values of some of the functions' output parameters are stored in outHeader or outFb. 

A.2  Matching CTL Parameters, Image Channels and Header Attributes 

Before each CTL function is called, it must be supplied with values for its parameters.  For an input parameter with name p, the 
value is found as follows: 

    if p is varying 

 if the previous function has an output parameter with name p 

     use previous function's output parameter 

 else if the previous function has an output parameter whose name is p concatenated with “Out” 

     use previous function's output parameter 

 else if inFb contains a slice with name p 

     use inFb slice 
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 else if input parameter p has a default value 

     use default value 

 else 

     error (throw Iex::ArgExc) 
    else (p is uniform) 

 if the previous function has an output parameter with name p 

     use previous function's output parameter 

 else if the previous function has an output parameter whose name is p concatenated with “Out” 

     use previous function's output parameter 

 else if inHeader contains an attribute with name p 

     use inHeader attribute 

 else if envHeader contains an attribute with name p 

     use envHeader attribute 
 else if input parameter p has a default value 

     use default value 

 else 

     error (throw Iex::ArgExc) 
 

In all cases, the type of the value used must match the type of the input parameter.  A type mismatch is an error; in this case 

applyTransforms() throws an Iex::TypeExc exception. 

After each CTL function returns, the values of its output parameters may be copied into outHeader or outFb, in addition to 

potentially being used as inputs to the next CTL function.  An output parameter with name p is handled as follows: 

    if p is varying 

 if outFb contains a slice with name p 

     copy the value into the outFb slice 

 else if name p ends in “Out” and outFb contains a slice whose name is p, except without the trailing “Out” 

     copy the value into the outFb slice 
 

    else (p is uniform) 

 if outHeader contains an attribute with name p 

     copy the value into the outHeader attribute 

 else if name p ends in “Out” and outHeader contains an attribute whose name is p, except without the trailing “Out” 

     copy the value into the outHeader attribute 
 

The type of the output parameter must match the type of the frame buffer slice or header attribute.  A type mismatch is an error; 

in this case applyTransforms() throws an Iex::TypeExc exception.  applyTransforms() does not add attributes 

to outHeader or slices to the outFb.  Only existing attributes or slices are used. 

Example:  inFb has two slices, A and C, and outFb has three slices, AOut, B and C.  transformNames lists two 

transforms, transform1 and transform2, with the following signatures: 

 
void 
transform1 
    (varying input  half A, 
     varying output half AOut, 
     varying output half B) 
{ 
    ... 
} 
 
void 
transform2 
    (varying input  half A, 
     varying input  half B, 
     varying input  half C, 
     varying output half AOut, 
     varying output half BOut, 
     varying output half COut) 
{ 
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    ... 
} 
 

In this case, frame buffer slices and transform parameters are connected as follows: 

Source Destination 

inFb, slice A transform1, parameter A 

inFB, slice C transform2, parameter C 

transform1, parameter AOut transform2, parameter A 

transform1, parameter B transform2, parameter B 

transform2, parameter AOut outFb, slice AOut 

transform2, parameter BOut outFb, slice B 

transform2, parameter COut outFb, slice C 

 

A.3  Translation between CTL Types, Channel Types and Attribute Types 

Function applyTransforms() translates a fixed set of OpenEXR attribute and channel types to and from CTL, as shown in 

the table below.  Parameter values of arbitrary type can be passed from one transform to the next, but only parameter values of 

the types listed in the table can be read from inHeader, envHeader or inFb, or stored in outHeader or outFb.   

OpenEXR channel type CTL function parameter type 

HALF varying half 

FLOAT varying float 

UINT varying unsigned int 

 

OpenEXR attribute type CTL function parameter type 

Box2iAttribute uniform Box2i, where Box2i is defined as 

struct Box2i 
{ 
    int min[2]; 
    int max[2]; 
}; 
 

Box2fAttribute uniform Box2f, where Box2f is defined as 

struct Box2f 
{ 
    float min[2]; 
    float max[2]; 
}; 
 

ChromaticitiesAttribute uniform Chromaticities, where Chromaticities 
is defined as 

struct Chromaticities 
{ 
    float red[2]; 
    float green[2]; 
    float blue[2]; 
    float white[2]; 
}; 
 



 

 

 

55 

 

OpenEXR attribute type CTL function parameter type 

DoubleAttribute uniform float 

FloatAttribute uniform float 

IntAttribute uniform int 

M33fAttribute uniform float[3][3] 

M44fAttribute uniform float[4][4] 

V2iAttribute uniform int[2] 

V3fAttribute uniform float[3] 

V3iAttribute uniform int[3] 
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Appendix B Source Code 

The C++ source code for the reference implementation of the CTL interpreter can be downloaded from 

 http://sourceforge.net/projects/ampasctl 

The CTL interpreter depends on a set of low-level utility libraries, called IlmBase, which can be downloaded from 

 http://savannah.nongnu.org/projects/openexr 
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Appendix C Sample Code and Utilities 

The OpenEXR_Viewers package, available at 

 http://savannah.nongnu.org/projects/openexr 

includes source code for OpenEXR still image and moving image viewers, both with CTL support.  In addition to the packages 

listed above, building the image viewers requires the OpenEXR and OpenEXR_CTL, packages, which are available at 

 http://savannah.nongnu.org/projects/openexr 

and 

 http://sourceforge.net/projects/ampasctl 

The source code packages mentioned contain instructions for building and installing the respective libraries and executables. 

 


